- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Grover, Corrinne E. (2)
-
Jareczek, Josef J. (2)
-
Wendel, Jonathan F. (2)
-
Arick II, Mark A. (1)
-
Hu, Guanjing (1)
-
Peterson, Daniel G. (1)
-
Xiong, Xianpeng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.more » « less
-
Jareczek, Josef J.; Grover, Corrinne E.; Hu, Guanjing; Xiong, Xianpeng; Arick II, Mark A.; Peterson, Daniel G.; Wendel, Jonathan F. (, Genes)Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.more » « less