skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jaroenchai, Nattapon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ames, Daniel P (Ed.)
    Hydrological streamline delineation is critical for effective environmental management, influencing agriculture sustainability, river dynamics, watershed planning, and more. This study develops a novel approach to combining transfer learning with convolutional neural networks that capitalize on image-based pre-trained models to improve the accuracy and transferability of streamline delineation. We evaluate the performance of eleven image-based pre-trained models and a baseline model using datasets from Rowan County, North Carolina, and Covington River, Virginia in the USA. Our results demonstrate that when models are adapted to a new area, the fine-tuned ImageNet pre-trained model exhibits superior predictive accuracy, markedly higher than the models trained from scratch or those only fine-tuned on the same area. Moreover, the pre-trained model achieves better smoothness and connectivity between classified streamline channels. These findings underline the effectiveness of transfer learning in enhancing the delineation of hydrological streamlines across varied geographies, offering a scalable solution for accurate and efficient environmental modelling. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. null (Ed.)