Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available May 1, 2023

ABSTRACT We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudoCℓ method and complement the analysis of the twopoint correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important crosscheck. Using the same fiducial Lambda cold dark matter model as inmore »Free, publiclyaccessible full text available July 27, 2023

ABSTRACT We develop a novel datadriven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in endtoend tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness $\lambda \in [30; 45)$, $\lambda \in [45; 60)$ and three bins inmore »Free, publiclyaccessible full text available December 9, 2022

ABSTRACT In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitudelimited sample optimized for the measurement of cosmological parameters, maglim, and a sample of luminous red galaxies selected with the redmagic algorithm. maglim/redmagic sample contains over 10 million/2.5 million galaxies and is divided into six/five photometric redshift bins spanning the range z ∈ [0.20, 1.05]/z ∈ [0.15, 0.90]. Both samples cover 4143 $\deg ^2$ over which we perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion paper, these measurements of galaxymore »Free, publiclyaccessible full text available February 15, 2023

Abstract We describe an updated calibration and diagnostic framework, Balrog , used to directly sample the selection and photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the singleepoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with generative models. The resulting object catalog is a Monte Carlo sampling of the DESmore »Free, publiclyaccessible full text available January 1, 2023

ABSTRACT We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including crosspeaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forwardmodelling scheme to create a likelihood of these statistics using Nbody simulations, using a Gaussian process emulator. We take into account themore »Free, publiclyaccessible full text available February 11, 2023

Free, publiclyaccessible full text available April 1, 2023

Free, publiclyaccessible full text available April 1, 2023

ABSTRACT As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are required to calibrate observational systematics, especially given the increased importance of object blending as survey depths increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective redshift distribution for lensing, nγ(z), and describe how to estimate it using image simulations. We use an extensive suite of tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 data set. We describe the multiband,more »Free, publiclyaccessible full text available November 30, 2022