skip to main content

Search for: All records

Creators/Authors contains: "Jay, David A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 provided a rare opportunity to understand global tsunamiimpacts of explosive volcanism and to evaluate future hazards, includingdangers from “volcanic meteotsunamis” (VMTs) induced by the atmosphericshock waves that followed the eruption. The propagation of the volcanic andmarine tsunamis was analyzed using globally distributed 1 min measurementsof air pressure and water level (WL) (from both tide gauges and deep-waterbuoys). The marine tsunami propagated primarily throughout the Pacific,reaching nearly 2 m at some locations, though most Pacific locationsrecorded maximums lower than 1 m. However, the VMT resulting from theatmospheric shock wave arrived before the marine tsunami and propagatedglobally, producing water level perturbations in the Indian Ocean, theMediterranean, and the Caribbean. The resulting water level response of manyPacific Rim gauges was amplified, likely related to wave interaction withbathymetry. The meteotsunami repeatedly boosted tsunami wave energy as itcircled the planet several times. In some locations, the VMT was amplifiedby as much as 35-fold relative to the inverse barometer due to near-Proudmanresonance and topographic effects. Thus, a meteotsunami from a largereruption (such as the Krakatoa eruption of 1883) could yield atmosphericpressure changes of 10 to 30 mb, yielding a 3–10 m near-field tsunami thatwould occur in advance of (usually) larger marine tsunami waves, posingadditional hazards to local populations. Present tsunami warning systems donot consider this threat. 
    more » « less
  2. Abstract

    Water temperature is a critical ecological indicator; however, few studies have statistically modeled century‐scale trends in riverine or estuarine water temperature, or their cause. Here, we recover, digitize, and analyze archival temperature measurements from the 1850s onward to investigate how and why water temperatures in the lower Columbia River are changing. To infill data gaps and explore changes, we develop regression models of daily historical Columbia River water temperature using time‐lagged river flow and air temperature as the independent variables. Models were developed for three time periods (mid‐19th, mid‐20th, and early 21st century), using archival and modern measurements (1854–1876; 1938–present). Daily and monthly averaged root‐mean‐square errors overall are 0.89°C and 0.77°C, respectively for the 1938–2018 period. Results suggest that annual averaged water temperature increased by 2.2°C ± 0.2°C since the 1850s, a rate of 1.3°C ± 0.1°C/century. Increased water temperatures are seasonally dependent. An increase of approximately 2.0°C ± 0.2°C/century occurs in the July–Dec time‐frame, while springtime trends are statistically insignificant. Rising temperatures change the probability of exceeding ecologically important thresholds; since the 1850s, the number of days with water temperatures over 20°C increased from ~5 to 60 per year, while the number below 2°C decreased from ~10 to 0 days/per year. Overall, the modern system is warmer, but exhibits less temperature variability. The reservoir system reduces sensitivity to short‐term atmospheric forcing. Statistical experiments within our modeling framework suggest that increased water temperature is driven by warming air temperatures (~29%), altered river flow (~14%), and water resources management (~57%).

    more » « less
  3. Abstract. We investigate here the effects of geometric properties (channel depth andcross-sectional convergence length), storm surge characteristics, friction,and river flow on the spatial and temporal variability of compound floodingalong an idealized, meso-tidal coastal-plain estuary. An analytical model isdeveloped that includes exponentially convergent geometry, tidal forcing,constant river flow, and a representation of storm surge as a combination oftwo sinusoidal waves. Nonlinear bed friction is treated using Chebyshevpolynomials and trigonometric functions, and a multi-segment approach isused to increase accuracy. Model results show that river discharge increasesthe damping of surge amplitudes in an estuary, while increasing channeldepth has the opposite effect. Sensitivity studies indicate that the impactof river flow on peak water level decreases as channel depth increases,while the influence of tide and surge increases in the landward portion ofan estuary. Moreover, model results show less surge damping in deeperconfigurations and even amplification in some cases, while increasedconvergence length scale increases damping of surge waves with periods of 12–72 h. For every modeled scenario, there is a point where river dischargeeffects on water level outweigh tide/surge effects. As a channel isdeepened, this cross-over point moves progressively upstream. Thus, channeldeepening may alter flood risk spatially along an estuary and reduce thelength of a river estuary, within which fluvial flooding is dominant. 
    more » « less
  4. null (Ed.)
    Nuisance flooding (NF) is defined as minor, nondestructive flooding that causes substantial, accumulating socioeconomic impacts to coastal communities. While sea-level rise is the main driver for the observed increase in NF events in the United States, we show here that secular changes in tides also contribute. An analysis of 40 tidal gauge records from U.S. coasts finds that, at 18 locations, NF increased due to tidal amplification, while decreases in tidal range suppressed NF at 11 locations. Estuaries show the largest changes in NF attributable to tide changes, and these can often be traced to anthropogenic alterations. Limited long-term measurements from estuaries suggest that the effects of evolving tides are more widespread than the locations considered here. The total number of NF days caused by tidal changes has increased at an exponential rate since 1950, adding ~27% to the total number of NF events observed in 2019 across locations with tidal amplification. 
    more » « less
  5. Abstract

    Over the next century, model projections suggest that river run‑off in the Pacific Northwest will increase during the winter season and that sea‐level rise (SLR) may exceed a meter. To investigate the resulting changes in flood hazard, we numerically model the February 1996 and January 1923 floods (the largest and third‐largest Willamette River floods since 1900) under present and potential future run‐off and sea level scenarios. First, we reproduce the actual February 1996 flood to within a root‐mean‐square error of 0.05 m (N = 7) for peak water levels. Next, we run scenarios in which three SLR scenarios (0, 0.6, and 1.5 m) are combined with two river run‐off scenarios (0% and 10% run‐off increase). Then the slightly larger 1923 flood scenario is run, but with modern (higher than historical) Columbia River flow. The results indicate that a 10% increase in river run‐off increased the1996 flood magnitude by 0.78 m, while 1923 flow increases flood magnitude by 0.82 m. Overall, the type and magnitude of future flood hazards vary with reach. The Portland/Vancouver Metropolitan area is most sensitive to changes in run‐off, with a smaller change of ~0.2–0.26 m per meter of SLR. By contrast, coastal regions are quite sensitive to amplified sea level and exhibit nonlinear responses based on changes to river slope and tides. Between the fluvial region and the estuary, a region of compound flood hazard exists that is sensitive to changes in river discharge, sea level, tides, and storm surge.

    more » « less