- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmed, R. (1)
-
Hamm, K. (1)
-
Jebelli, M. (1)
-
Kobourov, S. (1)
-
Sahneh, F. (1)
-
Spence, R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bahabry, Ahmed. (0)
-
& Bai, F. (0)
-
& Balasubramanian, R. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size O(|E||V |2) for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.