skip to main content


Search for: All records

Creators/Authors contains: "Jeltema, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.

     
    more » « less
  2. ABSTRACT

    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2, bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above λ > 20 and within 0.1 <$z$ <0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity–temperature (LX –TX ), luminosity–richness (LX –λ), and temperature–richness (TX –λ) scaling relations. We find that the fitted forms of the LX –TX relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e. LX –λ and TX –λ) between the optical and X-ray-selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray-selected samples compared to optically selected samples.

     
    more » « less
  3. Free, publicly-accessible full text available October 20, 2024
  4. Free, publicly-accessible full text available April 1, 2024
  5. Abstract We present the results of an analysis of Wide-field Infrared Survey Explorer (WISE) observations of the full 2500 deg 2 South Pole Telescope (SPT)-Sunyaev–Zel’dovich cluster sample. We describe a process for identifying active galactic nuclei (AGN) in brightest cluster galaxies (BCGs) based on WISE mid-IR color and redshift. Applying this technique to the BCGs of the SPT-SZ sample, we calculate the AGN-hosting BCG fraction, which is defined as the fraction of BCGs hosting bright central AGNs over all possible BCGs. Assuming an evolving single-burst stellar population model, we find statistically significant evidence (>99.9%) for a mid-IR excess at high redshift compared to low redshift, suggesting that the fraction of AGN-hosting BCGs increases with redshift over the range of 0 < z < 1.3. The best-fit redshift trend of the AGN-hosting BCG fraction has the form (1 + z ) 4.1±1.0 . These results are consistent with previous studies in galaxy clusters as well as as in field galaxies. One way to explain this result is that member galaxies at high redshift tend to have more cold gas. While BCGs in nearby galaxy clusters grow mostly by dry mergers with cluster members, leading to no increase in AGN activity, BCGs at high redshift could primarily merge with gas-rich satellites, providing fuel for feeding AGNs. If this observed increase in AGN activity is linked to gas-rich mergers rather than ICM cooling, we would expect to see an increase in scatter in the P cav versus L cool relation at z > 1. Last, this work confirms that the runaway cooling phase, as predicted by the classical cooling-flow model, in the Phoenix cluster is extremely rare and most BCGs have low (relative to Eddington) black hole accretion rates. 
    more » « less
  6. ABSTRACT We develop a novel data-driven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in end-to-end tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness $\lambda \in [30; 45)$, $\lambda \in [45; 60)$ and three bins in cluster redshift ($z\in [0.3; 0.35)$, $z\in [0.45; 0.5)$ and $z\in [0.6; 0.65)$. Using deep-field imaging data, we extrapolate galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and render mock clusters and line-of-sight catalogues into synthetic images in the same format as actual survey observations. Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, and correct for survey incompleteness. New realizations of synthetic clusters can be created at minimal cost, which will allow future analyses to generate the large number of images needed to characterize systematic uncertainties in cluster mass measurements. 
    more » « less
  7. Abstract We describe an updated calibration and diagnostic framework, Balrog , used to directly sample the selection and photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the single-epoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with generative models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the photometric redshifts of distant “source” galaxies and magnification biases of nearer “lens” galaxies. The recovered Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog, particularly in color, and capture the number density fluctuations from observing conditions of the real data within 1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ∼1–8 mmag, but for a small subset of objects, we detect significant magnitude biases correlated with large overestimates of the injected object size due to proximity effects and blending. We discuss approaches to extend the current methodology to capture more aspects of the transfer function and reach full coverage of the survey footprint for future analyses. 
    more » « less
  8. null (Ed.)
    ABSTRACT We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }\gt 40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up ${\gt}12{{\ \rm per\ cent}}$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields ${\gt}22{{\ \rm per\ cent}}$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA. 
    more » « less