Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured in this study using a Vocus‐2R proton‐transfer reaction time‐of‐flight mass spectrometer in Pasadena, California, downwind of Los Angeles, in summer 2022. Relative to 2010, ambient concentrations of aromatic hydrocarbons have declined at a similar rate as carbon monoxide, suggesting reduced overall emissions from mobile sources. However, the ambient concentrations of oxygenated VOCs have remained similar or increased, suggesting a greater relative importance of oxidation products and other emission sources, such as volatile chemical products whose emissions are largely unregulated. Relative to 2010, the range of measured VOCs was expanded, including higher aromatics and additional volatile chemical products, allowing a better understanding of a wider range of emission sources. Emission ratios relative to carbon monoxide were estimated and compared with 2010 emission ratios. Average measured ozone concentrations were generally comparable between 2022 and 2010; however, at the same temperature, daytime ozone concentrations were lower in 2022 than 2010. Faster photochemistry was observed in 2022, with average hydroxyl radical exposure being ∼68% higher during midday (statistically significant at 95% confidence), although this difference reduces to ∼35% when comparing observations at ambient temperatures of 25–30°C only. Future trends in temperature are important in predicting ozone production.more » « less
-
Abstract In this study, we investigate interstellar absorption lines along the line of sight toward the galactic low-mass X-ray binary Cygnus X-2. We combine absorption line data obtained from high-resolution X-ray spectra collected with the Chandra and XMM-Newton satellites, along with far-UV absorption lines observed by the Hubble Space Telescope’s (HST) Cosmic Origins Spectrograph (COS) instrument. Our primary objective is to understand the abundance and depletion of oxygen, iron, sulfur, and carbon. To achieve this, we have developed an analysis pipeline that simultaneously fits both the UV and X-ray data sets. This novel approach takes into account the line-spread function of HST/COS, enhancing the precision of our results. We examine the absorption lines of Feii, Sii, Cii, and Cipresent in the far-UV spectrum of Cygnus X-2, revealing the presence of at least two distinct absorbers characterized by different velocities. Additionally, we employCloudysimulations to compare our findings concerning the ionic ratios for the studied elements. We find that gaseous iron and sulfur exist in their singly ionized forms, Feiiand Sii, respectively, while the abundances of Ciiand Cido not agree with the Cloudy simulations of the neutral ISM. Finally, we explore discrepancies in the X-ray atomic data of iron and discuss their impact on the overall abundance and depletion of iron.more » « less
An official website of the United States government

Full Text Available