skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeong, Hyunmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-Level Synthesis (HLS) has enabled users to rapidly develop designs targeted for FPGAs from the behavioral description of the design. However, to synthesize an optimal design capable of taking better advantage of the target FPGA, a considerable amount of effort is needed to transform the initial behavioral description into a form that can capture the desired level of parallelism. Thus, a design space exploration (DSE) engine capable of optimizing large complex designs is needed to achieve this goal. We present a new DSE engine capable of considering code transformation, compiler directives (pragmas), and the compatibility of these optimizations. To accomplish this, we initially express the structure of the input code as a graph to guide the exploration process. To appropriately transform the code, we take advantage of ScaleHLS based on the multi-level compiler infrastructure (MLIR). Finally, we identify problems that limit the scalability of existing DSEs, which we name the “design space merging problem.” We address this issue by employing a Random Forest classifier that can successfully decrease the number of invalid design points without invoking the HLS compiler as a validation tool. We evaluated our DSE engine against the ScaleHLS DSE, outperforming it by a maximum of 59×. We additionally demonstrate the scalability of our design by applying our DSE to large-scale HLS designs, achieving a maximum speedup of 12× for the benchmarks in the MachSuite and Rodinia set. 
    more » « less
  2. This paper presents an enhanced version of a scalable HLS (High-Level Synthesis) framework named ScaleHLS, which can compile HLS C/C++ programs and PyTorch models to highly-efficient and synthesizable C++ designs. The original version of ScaleHLS achieved significant speedup on both C/C++ kernels and PyTorch models [14]. In this paper, we first highlight the key features of ScaleHLS on tackling the challenges present in the representation, optimization, and exploration of large-scale HLS designs. To further improve the scalability of ScaleHLS, we then propose an enhanced HLS transform and analysis library supported in both C++ and Python, and a new design space exploration algorithm to handle HLS designs with hierarchical structures more effectively. Comparing to the original ScaleHLS, our enhanced version improves the speedup by up to 60.9× on FPGAs. ScaleHLS is fully open-sourced at https://github.com/hanchenye/scalehls. 
    more » « less