skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jeong, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
  3. A<sc>bstract</sc>

    Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb1. The search uses two observables,$$ \mathcal{O} $$O1and$$ \mathcal{O} $$O3, which are Lorentz scalars. The observable$$ \mathcal{O} $$O1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$O3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.

     
    more » « less
  4. Abstract

    The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$+-, dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$m, transverse momentum$$p_{\textrm{T}} (\ell \ell )$$pT(), and$$\varphi ^{*}_{\eta }$$φη. The$$\varphi ^{*}_{\eta }$$φηobservable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$pT(), is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$pT()region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$TeVare investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$mranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$fb-1of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

     
    more » « less