skip to main content


Search for: All records

Creators/Authors contains: "Jha, Saurabh W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present an analysis of 102 Type Ia supernovae (SNe Ia) in nearby (z< 0.1), x-ray-selected galaxy clusters. This is the largest such sample to date and is based on archival data primarily from ZTF and ATLAS. We divide our SNe Ia into an inner cluster sample projected withinr500of the cluster center and an outer cluster sample projected betweenr500and 2r500. We compare these to field samples of SNe Ia at similar redshifts in both quiescent and star-forming host galaxies. Based on SALT3 fits to the light curves, we find that the inner cluster SNe Ia have a higher fraction of fast-evolving objects (SALT3x1< −1) than the outer cluster or field quiescent samples. This implies an intrinsically different population of SNe Ia occurs in inner cluster environments, beyond known correlations based on host galaxy alone. Our cluster samples show a strongly bimodalx1distribution with a fast-evolving component that dominates the inner cluster objects (≳75%) but is just a small fraction of SNe Ia in field star-forming galaxies (≲10%). We do not see strong evidence for variations in the color (SALT3c) distributions among the samples and find only minor differences in SN Ia standardization parameters and Hubble residuals. We suggest that the age of the stellar population drives the observed distributions, with the oldest populations nearly exclusively producing fast-evolving SNe Ia.

     
    more » « less
  2. Abstract

    We present high-cadence optical and ultraviolet (UV) observations of the Type II supernova (SN), SN 2022jox which exhibits early spectroscopic high-ionization flash features of Hi, Heii, Civ, and Nivthat disappear within the first few days after explosion. SN 2022jox was discovered by the Distance Less Than 40 Mpc survey ∼0.75 day after explosion with follow-up spectra and UV photometry obtained within minutes of discovery. The SN reached a peak brightness ofMV∼ −17.3 mag, and has an estimated56Ni mass of 0.04M, typical values for normal Type II SNe. The modeling of the early light curve and the strong flash signatures present in the optical spectra indicate interaction with circumstellar material (CSM) created from a progenitor with a mass-loss rate ofṀ103102Myr1. There may also be some indication of late-time CSM interaction in the form of an emission line blueward of Hαseen in spectra around 200 days. The mass-loss rate of SN 2022jox is much higher than the values typically associated with quiescent mass loss from red supergiants, the known progenitors of Type II SNe, but is comparable to inferred values from similar core-collapse SNe with flash features, suggesting an eruptive event or a superwind in the progenitor in the months or years before explosion.

     
    more » « less
  3. Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    We present high-cadence photometric and spectroscopic observations of SN 2023axu, a classical Type II supernova with an absoluteV-band peak magnitude of –17.2 ± 0.1 mag. SN 2023axu was discovered by the Distance Less Than 40 Mpc (DLT40) survey within 1 day of the last nondetection in the nearby galaxy NGC 2283 at 13.7 Mpc. We modeled the early light curve using a recently updated shock cooling model that includes the effects of line blanketing and found the explosion epoch to be MJD 59971.48 ± 0.03 and the probable progenitor to be a red supergiant. The shock cooling model underpredicts the overall UV data, which point to a possible interaction with circumstellar material. This interpretation is further supported by spectral behavior. We see a ledge feature around 4600 Å in the very early spectra (+1.1 and +1.5 days after the explosion), which can be a sign of circumstellar interaction. The signs of circumstellar material are further bolstered by the presence of absorption features blueward of Hαand Hβat day >40, which is also generally attributed to circumstellar interaction. Our analysis shows the need for high-cadence early photometric and spectroscopic data to decipher the mass-loss history of the progenitor.

     
    more » « less
  5. Abstract

    Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. usingTARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.

     
    more » « less
  6. Abstract

    We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJandKsbands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness (MKs=10.7mag) and color (JKs= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature (Teff=35001400+800K) and luminosity (logL/L=5.1±0.2). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofMinit= 17 ± 4M. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling atṀ3×105to 3 × 10−4Myr−1for an assumed wind velocity ofvw= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.

     
    more » « less
  7. Abstract

    We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended Niii(λλ4634.0,4640.6)/Ciii(λλ4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2Myr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialRCSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ= 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hαemission flux,RCSM,out≳ 9 × 1013cm.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  8. Abstract

    With the advent of high-cadence, all-sky automated surveys, supernovae (SNe) are now discovered closer than ever to their dates of explosion. However, young premaximum light follow-up spectra of Type Ic SNe (SNe Ic), probably arising from the most-stripped massive stars, remain rare despite their importance. In this Letter, we present a set of 49 optical spectra observed with the Las Cumbres Observatory through the Global Supernova Project for 6 SNe Ic, including a total of 17 premaximum spectra, of which 8 are observed more than a week beforeV-band maximum light. This data set increases the total number of publicly available premaximum-light SN Ic spectra by 25%, and we provide publicly available SNID templates that will significantly aid in the fast identification of young SNe Ic in the future. We present a detailed analysis of these spectra, including Feii5169 velocity measurements, Oi7774 line strengths, and continuum shapes. We compare our results to published samples of stripped SNe in the literature and find one SN in our sample that stands out. SN 2019ewu has a unique combination of features for an SN Ic: an extremely blue continuum, high absorption velocities, a P Cygni–shaped feature almost 2 weeks before maximum light that TARDIS radiative transfer modeling attributes to Ciirather than Hα, and weak or nonexistent Oi7774 absorption feature until maximum light.

     
    more » « less
  9. Abstract

    Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae and none to date for broad-lined Type Ic supernovae (SNe Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Feii5169 Å velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra usingtardis, a 1D Monte Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV, likely due to simplifying assumptions. We find that high densities at high velocities are needed to reproduce the spectra, with ∼3Mof material atv> 22,000 km s−1, assuming spherical symmetry. Our nebular line fits suggest a steep density profile at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light-curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.

     
    more » « less
  10. Abstract

    We present the densely sampled early light curve of the Type II supernova (SN) 2023ixf, first observed within hours of explosion in the nearby Pinwheel Galaxy (Messier 101; 6.7 Mpc). Comparing these data to recently updated models of shock-cooling emission, we find that the progenitor likely had a radius of 410 ± 10R. Our estimate is model dependent but consistent with a red supergiant. These models provide a good fit to the data starting about 1 day after the explosion, despite the fact that the classification spectrum shows signatures of circumstellar material around SN 2023ixf during that time. Photometry during the first day after the explosion, provided almost entirely by amateur astronomers, does not agree with the shock-cooling models or a simple power-law rise fit to data after 1 day. We consider the possible causes of this discrepancy, including precursor activity from the progenitor star, circumstellar interaction, and emission from the shock before or after it breaks out of the stellar surface. The very low luminosity (−11 mag >M> −14 mag) and short duration of the initial excess lead us to prefer a scenario related to prolonged emission from the SN shock traveling through the progenitor system.

     
    more » « less