skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ji, Alexander P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars. 
    more » « less
    Free, publicly-accessible full text available February 4, 2026
  2. Abstract The Aeosproject introduces a series of high-resolution cosmological simulations that model star-by-star chemical enrichment and galaxy formation in the early Universe, achieving 1 pc resolution. These simulations capture the complexities of galaxy evolution within the first ~300 Myr by modeling individual stars and their feedback processes. By incorporating chemical yields from individual stars, Aeosgenerates galaxies with diverse stellar chemical abundances, linking them to hierarchical galaxy formation and early nucleosynthetic events. These simulations underscore the importance of chemical abundance patterns in ancient stars as vital probes of early nucleosynthesis, star formation histories, and galaxy formation. We examine the metallicity floors of various elements resulting from Population III enrichment, providing best-fit values for eight different metals (e.g., [O/H] = −4.0) to guide simulations without Population III models. Additionally, we identify galaxies that begin star formation with Population II after external enrichment and investigate the frequency of carbon-enhanced metal-poor stars at varying metallicities. The Aeossimulations offer detailed insights into the relationship between star formation, feedback, and chemical enrichment. Future work will extend these simulations to later epochs to interpret the diverse stellar populations of the Milky Way and its satellites. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  3. Abstract The growing number of Milky Way satellites detected in recent years has introduced a new focus for stellar abundance analysis. Abundances of stars in satellites have been used to probe the nature of these systems and their chemical evolution. However, for most satellites, only centrally located stars have been examined. This paper presents an analysis of three stars in the Tucana V system, one in the inner region and two at ∼10′ (7–10 half-light radii) from the center. We find a remarkable chemical diversity between the stars. One star exhibits enhancements in rapid neutron-capture elements (anr-I star), and another is highly enhanced in C, N, and O but with low neutron-capture abundances (a CEMP-no star). The metallicities of the stars analyzed span more than 1 dex from [Fe/H] = −3.55 to −2.46. This, combined with a large abundance range of other elements like Ca, Sc, and Ni, confirms that Tuc V is an ultrafaint dwarf (UFD) galaxy. The variation in abundances, highlighted by [Mg/Ca] ratios ranging from +0.89 to −0.75, among the stars demonstrates that the chemical enrichment history of Tuc V was very inhomogeneous. Tuc V is only the second UFD galaxy in which stars located at large distances from the galactic center have been analyzed, along with Tucana II. The chemical diversity seen in these two galaxies, driven by the composition of the noncentral member stars, suggests that distant member stars are important to include when classifying faint satellites and that these systems may have experienced more complex chemical enrichment histories than previously anticipated. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  4. The discovery of a star formed out of pair-instability supernova ejecta would have massive implications for the Population III star initial mass function and the existence of stars over 100 Msun, but none have yet been found. Recently, the star LAMOST J1010+2358 was claimed to be a star that formed out of gas enriched by a pair-instability supernova. We present a non-LTE abundance analysis of a new high-resolution Keck/HIRES spectrum of J1010+2358. We determined the carbon and aluminum abundances needed to definitively distinguish between enrichment by a pair-instability and core-collapse supernova. Our new analysis demonstrates that J1010+2358 does not have the unique abundance pattern of a a pair-instability supernova, but was instead enriched by the ejecta of a low mass core-collapse supernova. Thus, there are still no known stars displaying unambiguous signatures of pair-instability supernovae. 
    more » « less
  5. ABSTRACT Very metal-poor stars ($$\rm [Fe/H] \lt -2$$) in the Milky Way are fossil records of early chemical evolution and the assembly and structure of the Galaxy. However, they are rare and hard to find. Gaia DR3 has provided over 200 million low-resolution (R ≈ 50) XP spectra, which provides an opportunity to greatly increase the number of candidate metal-poor stars. In this work, we utilize the XGBoost classification algorithm to identify ∼200 000 very metal-poor star candidates. Compared to past work, we increase the candidate metal-poor sample by about an order of magnitude, with comparable or better purity than past studies. First, we develop three classifiers for bright stars (BP < 16). They are Classifier-T (for Turn-off stars), Classifier-GC (for Giant stars with high completeness), and Classifier-GP (for Giant stars with high purity) with expected purity of 52 per cent/45 per cent/76 per cent and completeness of 32 per cent/93 per cent/66 per cent, respectively. These three classifiers obtained a total of 11 000/111 000/44 000 bright metal-poor candidates. We apply model-T and model-GP on faint stars (BP > 16) and obtain 38 000/41 000 additional metal-poor candidates with purity 29 per cent/52 per cent, respectively. We make our metal-poor star catalogues publicly available, for further exploration of the metal-poor Milky Way. 
    more » « less
  6. Abstract Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by ther-process. We confirm a star-to-star dispersion inr-process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the mainr-process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavierr-process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows nor-process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations. 
    more » « less
  7. Abstract We present a population of 11 of the faintest (>25.5 AB mag) short gamma-ray burst (GRB) host galaxies. We model their sparse available observations using the stellar population inference codeProspector-βand develop a novel implementation to incorporate the galaxy mass–radius relation. Assuming these hosts are randomly drawn from the galaxy population and conditioning this draw on their observed flux and size in a few photometric bands, we determine that these hosts have dwarf galaxy stellar masses of 7.0 log ( M * / M ) 9.1 . This is striking as only 14% of short GRB hosts with previous inferred stellar masses hadM*≲ 109M. We further show these short GRBs have smaller physical and host-normalized offsets than the rest of the population, suggesting that the majority of their neutron star (NS) merger progenitors were retained within their hosts. The presumably shallow potentials of these hosts translate to small escape velocities of ∼5.5–80 km s−1, indicative of either low postsupernova systemic velocities or short inspiral times. While short GRBs with identified dwarf host galaxies now comprise ≈14% of the total Swift-detected population, a number are likely missing in the current population, as larger systemic velocities (observed from the Galactic NS population) would result in highly offset short GRBs and less secure host associations. However, the revelation of a population of short GRBs retained in low-mass host galaxies offers a natural explanation for the observedr-process enrichment via NS mergers in Local Group dwarf galaxies, and has implications for gravitational-wave follow-up strategies. 
    more » « less
  8. ABSTRACT We present the first detailed chemical-abundance analysis of stars from the dwarf-galaxy stellar stream Wukong/LMS-1 covering a wide metallicity range ($$-3.5 \lt \rm [Fe/H] \lesssim -1.3$$). We find abundance patterns that are effectively indistinguishable from the bulk of Indus and Jhelum, a pair of smaller stellar streams proposed to be dynamically associated with Wukong/LMS-1. We confirmed a carbon-enhanced metal-poor star ($$\rm [C/Fe] \gt +0.7$$ and $$\rm [Fe/H] \sim -2.9$$) in Wukong/LMS-1 with strong enhancements in Sr, Y, and Zr, which is peculiar given its solar-level [Ba/Fe]. Wukong/LMS-1 stars have high abundances of α elements up to $$\rm [Fe/H] \gtrsim -2$$, which is expected for relatively massive dwarfs. Towards the high-metallicity end, Wukong/LMS-1 becomes α-poor, revealing that it probably experienced fairly standard chemical evolution. We identified a pair of N- and Na-rich stars in Wukong/LMS-1, reminiscent of multiple stellar populations in globular clusters. This indicates that this dwarf galaxy contained at least one globular cluster that was completely disrupted in addition to two intact ones previously known to be associated with Wukong/LMS-1, which is possibly connected to similar evidence found in Indus. From these ≥3 globular clusters, we estimate the total mass of Wukong/LMS-1 to be $${\approx }10^{10} \, \mathrm{M}_\odot$$, representing ∼1 per cent of the present-day Milky Way. Finally, the [Eu/Mg] ratio in Wukong/LMS-1 continuously increases with metallicity, making this the first example of a dwarf galaxy where the production of r-process elements is clearly dominated by delayed sources, presumably neutron-star mergers. 
    more » « less