Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2025
-
Free, publicly-accessible full text available April 22, 2025
-
Free, publicly-accessible full text available April 22, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available February 28, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Abstract In many scientific experiments, multiarmed bandits are used as an adaptive data collection method. However, this adaptive process can lead to a dependence that renders many commonly used statistical inference methods invalid. An example of this is the sample mean, which is a natural estimator of the mean parameter but can be biased. This can cause test statistics based on this estimator to have an inflated type I error rate, and the resulting confidence intervals may have significantly lower coverage probabilities than their nominal values. To address this issue, we propose an alternative approach called randomized multiarm bandits (rMAB). This combines a randomization step with a chosen MAB algorithm, and by selecting the randomization probability appropriately, optimal regret can be achieved asymptotically. Numerical evidence shows that the bias of the sample mean based on the rMAB is much smaller than that of other methods. The test statistic and confidence interval produced by this method also perform much better than its competitors.
-
Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this paper, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study,we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device.more » « less
-
Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this poster, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study, we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device.more » « less