skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ji, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in machine learning (ML) have enabled predictive programs for photovoltaic characterization, optimization, and materials discovery. Despite these advances, the standard photovoltaic materials development workflow still involves manually performing multiple characterization techniques on every new device, requiring significant time and expenditures. One barrier to ML implementation is that most models reported to date are trained on computer simulated data, due to the difficulty in experimentally collecting the massive data sets needed for model training, limiting the ability to assess the limitations and validity of these methods, as well as to access new potential physical mechanisms absent in simulations. Herein, several neural networks trained on experimental data from PbS colloidal quantum dot thin‐film solar cells are introduced. These models predict multiple, complex materials properties, including carrier mobility, relative photoluminescence intensity, and electronic trap‐state density, from a single, simple measurement: illuminated current–voltage curves. The measurement system considers the spatial distribution of the materials parameters to gather and predict large amounts of data by treating an inhomogeneous device as a series of thousands of micro‐devices, a novel feature compared to existing solutions. This model can be extended to other materials and devices, accelerating development times for new optoelectronic technologies. 
    more » « less