- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Ji, Houxiang (4)
-
Gong, Zhangxiaowen (3)
-
Fletcher, Christopher W. (2)
-
Hughes, Christopher J. (2)
-
Torrellas, Josep (2)
-
Baghsorkhi, Sara (1)
-
Fletcher, Christopher (1)
-
Hughes, Christopher (1)
-
Liu, Lihui (1)
-
Tong, Hanghang (1)
-
Torrellas, Josep. (1)
-
Xu, Jiejun (1)
-
Yao, Yao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Knowledge graph has been widely used in fact checking, owing to its capability to provide crucial background knowledge to help verify claims. Traditional fact checking works mainly focus on analyzing a single claim but have largely ignored analysis on the semantic consistency of pair-wise claims, despite its key importance in the real-world applications, e.g., multimodal fake news detection. This paper proposes a graph neural network based model INSPECTOR for pair-wise fact checking. Given a pair of claims, INSPECTOR aims to detect the potential semantic inconsistency of the input claims. The main idea of INSPECTOR is to use a graph attention neural network to learn a graph embedding for each claim in the pair, then use a tensor neural network to classify this pair of claims as consistent vs. inconsistent. The experiment results show that our algorithm outperforms state-of-the-art methods, with a higher accuracy and a lower variance.more » « less
-
Gong, Zhangxiaowen; Ji, Houxiang; Yao, Yao; Fletcher, Christopher W.; Hughes, Christopher J.; Torrellas, Josep (, International Symposium on Computer Architecture)
-
Gong, Zhangxiaowen; Ji, Houxiang; Fletcher, Christopher W.; Hughes, Christopher J.; Torrellas, Josep (, International Conference on Parallel Architectures and Compilation Techniques)null (Ed.)
-
Gong, Zhangxiaowen; Ji, Houxiang; Fletcher, Christopher; Hughes, Christopher; Baghsorkhi, Sara; Torrellas, Josep. (, Proceedings of the Annual International Symposium on Microarchitecture)null (Ed.)
An official website of the United States government
