skip to main content

Search for: All records

Creators/Authors contains: "Ji, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In exploring the conformational behavior of cyclic tungsten bis-alkyne complexes, two dialkynylamides (14a and 14c) and two dialkynylesters (14b and 14d) derived from 1,1’-ferrocenedicarboxylic acid were prepared. They were subsequently reacted with W(CO)3(dmtc)2 to yield the desired cyclic tungsten bis-alkyne complexes 8-11. In the cyclization of 14a to yield 8 a dimeric macrocyclic complex, 15, featuring two tungsten bis-alkyne complexes in the ring, also was isolated. The conformational behavior of these complexes was assessed by analysis of the 1H NMR resonances for the alkyne hydrogens, which appear around 11 ppm. The spectra for complexes 10, 11 and 15 show multiplemore »singlets of varying integrations for these protons, while the spectra for complexes 8 and 9 show only two resonances of equal integration for the alkyne hydrogens. The spectra for 8 and 9 changed very little when examined at higher temperatures, indicating that the solution conformation is robust. A ROESY spectrum was obtained for 8. It did not show any crosspeaks between the two alkyne hydrogens. The NMR data shows that the alkyne ligands in 10, 11 and 15 are able to rotate about the tungsten-alkyne bond; these complexes adopted several different solution conformations relating to syn and anti arrangements of the alkyne ligands. In contrast, complexes 8 and 9 adopt only one solution conformation, and the alkyne ligands in these species do not rotate about the tungsten-alkyne bond. The NMR spectra for 8 and 9 also show that these complexes are asymmetric. The 1H NMR spectra for 8 and 9 show that each hydrogen atom has its own unique resonance in the 1H NMR spectrum. There are 8 resonances for the 8 Cp protons, 4 resonances for the methylene protons, 2 resonances for the alkyne protons, and in the case of 8, 2 resonances for the NH protons. The two NH protons on complex 8 were found to have widely different chemical shifts. A DMSO titration was performed and it showed that one of the two NH protons in 8 is involved in an intramolecular hydrogen bond. Given that the diester 9 adopts a similar conformation as the diamide 8, this intramolecular hydrogen bond appears to result from the conformation imposed by cyclization of the ring system. Overall, the data show that the ring system for 8 and 9 provides a unique, rigid, robust, and air stable cyclic molecule where the alkyne ligands are limited to one orientation, presumably the syn orientation. The lack of mobility for the alkyne ligands limits the cyclic molecule to only one solution conformation. Complexes 8 and 9 are the first reported examples of cyclic tungsten bis-alkyne complexes that only adopt a single, robust conformation in solution.« less
  2. Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available August 1, 2022
  4. A bstract Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 μ b − 1 and 27.4 pb − 1 , respectively. Jets with different areas are reconstructed using the anti- k T algorithm by varying the distance parameter R . The measurements are performed using jets with transverse momenta ( p T ) greater than 200 GeV and in a pseudorapidity range of |η| < 2. To reveal the mediummore »modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, p T and, for the first time, as a function of R up to 1.0. For the most central collisions, a strong suppression is observed for high- p T jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on R is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.« less