skip to main content

Search for: All records

Creators/Authors contains: "Ji, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water’s narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water’s electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous batterymore »technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided.« less
  2. In review.
    Free, publicly-accessible full text available August 1, 2022
  3. As promising alternatives to lithium-ion batteries, rechargeable anion-shuttle batteries (ASBs) with anions as charge carriers stand out because of their low cost, long cyclic lifetime, and/or high energy density. In this review, we provide for the first time, comprehensive insights into the anion shuttling mechanisms of ASBs, including anion-based rocking-chair batteries (ARBs), dual-ion batteries (DIBs), including insertion-type, conversion-type, and conversion- insertion-type, and reverse dual-ion batteries (RDIBs). Thereafter, we review the latest progresses and challenges regarding electrode materials and electrolytes for ASBs. In addition, we summarize the existing dilemmas of ASBs and outline the perspective of ASB technology for future gridmore »storage.« less
  5. A non-aqueous proton electrolyte is devised by dissolving H3PO4 into acetonitrile. The electrolyte exhibits unique vibrational signatures from stimulated Raman spectroscopy. Such an electrolyte exhibits unique characteristics compared to aqueous acidic electrolytes: 1) higher (de)protonation potential for a lower desolvation energy of protons, 2) better cycling stability by dissolution suppression, and 3) higher Coulombic efficiency owing to the lack of oxygen evolution reaction. Two non-aqueous proton full cells exhibit better cycling stability, higher Coulombic efficiency, and less self-discharge compared to the aqueous counterpart.
  6. Free, publicly-accessible full text available July 1, 2022
  7. Free, publicly-accessible full text available March 1, 2023
  8. Free, publicly-accessible full text available March 1, 2023
  9. Abstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν μ -sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale ismore »shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.« less
    Free, publicly-accessible full text available December 1, 2022