Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratioϕwith 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial atϕ + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.more » « lessFree, publicly-accessible full text available December 1, 2026
-
We study a 2D measurement-only random circuit motivated by the Bacon-Shor error correcting code. We find a rich phase diagram as one varies the relative probabilities of measuring nearest-neighbor Pauli XX and ZZ check operators. In the Bacon-Shor code, these checks commute with a group of stabilizer and logical operators, which therefore represent conserved quantities. Described as a subsystem symmetry, these conservation laws lead to a continuous phase transition between an X-basis and Z-basis spin-glass order. The two phases are separated by a critical point where the entanglement entropy between two halves of an L × L system scales as L ln L, a logarithmic violation of the area law. We generalize to a model where the check operators break the subsystem symmetries (and the Bacon-Shor code structure). In tension with established heuristics, we find that the phase transition is replaced by a smooth crossover, and the X - and Z -basis spin-glass orders spatially coexist. Additionally, if we approach the line of subsystem symmetries away from the critical point in the phase diagram, some spin-glass order parameters jump discontinuously.more » « less
-
We study the gauging of a global U(1) symmetry in a gapped system in(2+1)d. The gauging procedure has been well-understood for a finiteglobal symmetry group, which leads to a new gapped phase with emergentgauge structure and can be described algebraically using themathematical framework of modular tensor category (MTC). We develop acategorical description of U(1) gauging in a MTC, taking into accountthe dynamics of U(1) gauge field absent in the finite group case. Whenthe ungauged system has a non-zero Hall conductance, the gauged theoryremains gapped and we determine the complete set of anyon data for thegauged theory. On the other hand, when the Hall conductance vanishes, weargue that gauging has the same effect of condensing a special Abeliananyon nucleated by inserting 2\pi 2 π U(1) flux. We apply our procedure to theSU(2) _k k MTCs and derive the full MTC data for the \mathbb{Z}_k ℤ k parafermion MTCs. We also discuss a dual U(1) symmetry that emergesafter the original U(1) symmetry of an MTC is gauged.more » « less
-
We investigate the behavior of higher-form symmetries at variousquantum phase transitions. We consider discrete 1-form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim - \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopic-independent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0 | O_\mathcal{C} | 1 \rangle / \langle 0 | 1 \rangle S 𝒞 = ⟨ 0 | O 𝒞 | 1 ⟩ / ⟨ 0 | 1 ⟩ where |0\rangle | 0 ⟩ and |1\rangle | 1 ⟩ are many-body states with different topological nature.more » « less
An official website of the United States government
