Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

We study the gauging of a global U(1) symmetry in a gapped system in(2+1)d. The gauging procedure has been wellunderstood for a finiteglobal symmetry group, which leads to a new gapped phase with emergentgauge structure and can be described algebraically using themathematical framework of modular tensor category (MTC). We develop acategorical description of U(1) gauging in a MTC, taking into accountthe dynamics of U(1) gauge field absent in the finite group case. Whenthe ungauged system has a nonzero Hall conductance, the gauged theoryremains gapped and we determine the complete set of anyon data for thegauged theory. On the other hand, when the Hall conductance vanishes, weargue that gauging has the same effect of condensing a special Abeliananyon nucleated by inserting 2\pi 2 π U(1) flux. We apply our procedure to theSU(2) _k k MTCs and derive the full MTC data for the \mathbb{Z}_k ℤ k parafermion MTCs. We also discuss a dual U(1) symmetry that emergesafter the original U(1) symmetry of an MTC is gauged.more » « less

We investigate the behavior of higherform symmetries at variousquantum phase transitions. We consider discrete 1form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim  \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopicindependent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0  O_\mathcal{C}  1 \rangle / \langle 0  1 \rangle S 𝒞 = ⟨ 0  O 𝒞  1 ⟩ / ⟨ 0  1 ⟩ where 0\rangle  0 ⟩ and 1\rangle  1 ⟩ are manybody states with different topological nature.more » « less

null (Ed.)One dimensional (1d) interacting systems with local Hamiltonianscan be studied with various welldeveloped analytical methods.Recently novel 1d physics was found numerically in systems witheither spatially nonlocal interactions, or at the 1d boundary of2d quantum critical points, and the critical fluctuation in thebulk also yields effective nonlocal interactions at the boundary.This work studies the edge states at the 1d boundary of 2dstrongly interacting symmetry protected topological (SPT) states,when the bulk is driven to a disorderorder phase transition. Wewill take the 2d AffleckKennedyLiebTasaki (AKLT) state as anexample, which is a SPT state protected by the SO(3) spinsymmetry and spatial translation. We found that the original(1+1)d boundary conformal field theory of the AKLT state isunstable due to coupling to the boundary avatar of the bulkquantum critical fluctuations. When the bulk is fixed at thequantum critical point, within the accuracy of our expansionmethod, we find that by tuning one parameter at the boundary,there is a generic direct transition between the long rangeantiferromagnetic Néel order and the valence bond solid (VBS)order. This transition is very similar to the NéelVBStransition recently found in numerical simulation of a spin1/2chain with nonlocal spatial interactions. Connections between ouranalytical studies and recent numerical results concerning theedge states of the 2d AKLTlike state at a bulk quantum phasetransition will also be discussed.more » « less