skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jiang, Shaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Synthetic aperture radar (SAR) utilizes an aircraft-carried antenna to emit electromagnetic pulses and detect the returning echoes. As the aircraft travels across a designated area, it synthesizes a large virtual aperture to improve image resolution. Inspired by SAR, we introduce synthetic aperture ptycho-endoscopy (SAPE) for micro-endoscopic imaging beyond the diffraction limit. SAPE operates by hand-holding a lensless fiber bundle tip to record coherent diffraction patterns from specimens. The fiber cores at the distal tip modulate the diffracted wavefield within a confined area, emulating the role of the ‘airborne antenna’ in SAR. The handheld operation introduces positional shifts to the tip, analogous to the aircraft’s movement. These shifts facilitate the acquisition of a ptychogram and synthesize a large virtual aperture extending beyond the bundle’s physical limit. We mitigate the influences of hand motion and fiber bending through a low-rank spatiotemporal decomposition of the bundle’s modulation profile. Our tests demonstrate the ability to resolve a 548-nm linewidth on a resolution target. The achieved space-bandwidth product is ~1.1 million effective pixels, representing a 36-fold increase compared to that of the original fiber bundle. Furthermore, SAPE’s refocusing capability enables imaging over an extended depth of field exceeding 2 cm. The aperture synthesizing process in SAPE surpasses the diffraction limit set by the probe’s maximum collection angle, opening new opportunities for both fiber-based and distal-chip endoscopy in applications such as medical diagnostics and industrial inspection. 
    more » « less
  2. Programmable illumination control is essential for many computational microscopy techniques. Conventional light source array is often arranged on a fixed grid of a planar surface for providing programmable sample illumination. Here, we report the development of a freeform illuminator that can be arranged at arbitrary 2-dimensional or 3-dimensional (3D) surface structures for computational microscopy. The freeform illuminator can be designed in a small form factor with a dense light source arrangement in 3D. It can be placed closer to the sample for providing angle-varied illumination with higher optical flux and smaller angular increment. With the freeform illuminators, we develop a calibration process using a low-cost Raspberry-Pi image sensor coated with a monolayer of blood cells. By tracking the positional shift of the blood-cell diffraction patterns at 2 distinct regions of the coded sensor, we can infer the 3D positions of the light source elements in a way similar to the stereo vision reconstruction approach. To demonstrate the applications for computational microscopy, we validate the freeform illuminators for Fourier ptychographic microscopy, 3D tomographic imaging, and on-chip microscopy. We also present a longitudinal study by tracking the growth of live bacterial cultures over a large field of view. The reported freeform illuminators and the related calibration process offer flexibilities and extended scope for imaging innovations in computational microscopy. 
    more » « less
  3. Ptychography is an enabling microscopy technique for both fundamental and applied sciences. In the past decade, it has become an indispensable imaging tool in most X-ray synchrotrons and national laboratories worldwide. However, ptychography’s limited resolution and throughput in the visible light regime have prevented its wide adoption in biomedical research. Recent developments in this technique have resolved these issues and offer turnkey solutions for high-throughput optical imaging with minimum hardware modifications. The demonstrated imaging throughput is now greater than that of a high-end whole slide scanner. In this review, we discuss the basic principle of ptychography and summarize the main milestones of its development. Different ptychographic implementations are categorized into four groups based on their lensless/lens-based configurations and coded-illumination/coded-detection operations. We also highlight the related biomedical applications, including digital pathology, drug screening, urinalysis, blood analysis, cytometric analysis, rare cell screening, cell culture monitoring, cell and tissue imaging in 2D and 3D, polarimetric analysis, among others. Ptychography for high-throughput optical imaging, currently in its early stages, will continue to improve in performance and expand in its applications. We conclude this review article by pointing out several directions for its future development. 
    more » « less
  4. The applications of conventional ptychography are limited by its relatively low resolution and throughput in the visible light regime. The new development of coded ptychography (CP) has addressed these issues and achieved the highest numerical aperture for large-area optical imaging in a lensless configuration. A high-quality reconstruction of CP relies on precise tracking of the coded sensor’s positional shifts. The coded layer on the sensor, however, prevents the use of cross correlation analysis for motion tracking. Here we derive and analyze the motion tracking model of CP. A novel, to the best of our knowledge, remote referencing scheme and its subsequent refinement pipeline are developed for blind image acquisition. By using this approach, we can suppress the correlation peak caused by the coded surface and recover the positional shifts with deep sub-pixel accuracy. In contrast with common positional refinement methods, the reported approach can be disentangled from the iterative phase retrieval process and is computationally efficient. It allows blind image acquisition without motion feedback from the scanning process. It also provides a robust and reliable solution for implementing ptychography with high imaging throughput. We validate this approach by performing high-resolution whole slide imaging of bio-specimens. 
    more » « less
  5. The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic applications and clinical practices. Integrating WSI with machine learning promises the growth of this field in upcoming years. Here we report the design and implementation of a handheld, colour-multiplexed, and AI-powered ptychographic whole slide scanner for digital pathology applications. This handheld scanner is built using low-cost and off-the-shelf components, including red, green, and blue laser diodes for sample illumination, a modified stage for programmable sample positioning, and a synchronized image sensor pair for data acquisition. We smear a monolayer of goat blood cells on the main sensor for high-resolution lensless coded ptychographic imaging. The synchronized secondary sensor acts as a non-contact encoder for precisely tracking the absolute object position for ptychographic reconstruction. For WSI, we introduce a new phase-contrast-based focus metric for post-acquisition autofocusing of both stained and unstained specimens. We show that the scanner can resolve the 388-nm linewidth on the resolution target and acquire gigapixel images with a 14 mm × 11 mm area in ∼70 seconds. The imaging performance is validated with regular stained pathology slides, unstained thyroid smears, and malaria-infected blood smears. The deep neural network developed in this study further enables high-throughput cytometric analysis using the recovered complex amplitude. The reported do-it-yourself scanner offers a portable solution to transform the high-end WSI system into one that can be made widely available at a low cost. The capability of high-throughput quantitative phase imaging may also find applications in rapid on-site evaluations. 
    more » « less
  6. We report the implementation of a fully on-chip, lensless microscopy technique termed optofluidic ptychography. This imaging modality complements the miniaturization provided by microfluidics and allows the integration of ptychographic microscopy into various lab-on-a-chip devices. In our prototype, we place a microfluidic channel on the top surface of a coverslip and coat the bottom surface with a scattering layer. The channel and the coated coverslip substrate are then placed on top of an image sensor for diffraction data acquisition. Similar to the operation of a flow cytometer, the device utilizes microfluidic flow to deliver specimens across the channel. The diffracted light from the flowing objects is modulated by the scattering layer and recorded by the image sensor for ptychographic reconstruction, where high-resolution quantitative complex images are recovered from the diffraction measurements. By using an image sensor with a 1.85 μm pixel size, our device can resolve the 550 nm linewidth on the resolution target. We validate the device by imaging different types of biospecimens, including C. elegans , yeast cells, paramecium , and closterium sp . We also demonstrate a high-resolution ptychographic reconstruction at a video framerate of 30 frames per second. The reported technique can address a wide range of biomedical needs and engenders new ptychographic imaging innovations in a flow cytometer configuration. 
    more » « less
  7. null (Ed.)