skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Tianze"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Planted Dense Subgraph (PDS) problem is a prototypical problem with a computational-statistical gap. It also exhibits an intriguing additional phenomenon: different tasks, such as detection or re- covery, appear to have different computational limits. A detection-recovery gap for PDS was sub- stantiated in the form of a precise conjecture given by Chen and Xu (2014) (based on the parameter values for which a convexified MLE succeeds), and then shown to hold for low-degree polynomial algorithms by Schramm and Wein (2022) and for MCMC algorithms for Ben Arous et al. (2020). In this paper we demonstrate that a slight variation of the Planted Clique Hypothesis with secret leakage (introduced in Brennan and Bresler (2020)), implies a detection-recovery gap for PDS. In the same vein, we also obtain a sharp lower bound for refutation, yielding a detection-refutation gap. Our methods build on the framework of Brennan and Bresler (2020) to construct average-case reductions mapping secret leakage Planted Clique to appropriate target problems. 
    more » « less