skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available January 15, 2025
  3. Free, publicly-accessible full text available August 1, 2024
  4. null (Ed.)
    Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3 MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3 MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3 MLCT lifetime (160 ps), 3 MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO 2 /FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications. 
    more » « less
  5. Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends. 
    more » « less
  6. null (Ed.)