skip to main content

Search for: All records

Creators/Authors contains: "Jiang, Xiaoqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 11, 2025
  2. Abstract Importance

    The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models’ performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets.


    This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance.

    Materials and Methods

    We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT.


    Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed.


    The study’s findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and performance of LLMs in clinical settings.


    While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.

    more » « less
  3. Nikolski, Macha (Ed.)
    Abstract Motivation

    Genome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations. However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of large-scale collaborative GWAS.


    This work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the proposed method and the promise for its application for large-scale collaborative GWAS.

    Availability and implementation

    The source code and data are available at

    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Abstract

    The rapid improvements in genomic sequencing technology have led to the proliferation of locally collected genomic datasets. Given the sensitivity of genomic data, it is crucial to conduct collaborative studies while preserving the privacy of the individuals. However, before starting any collaborative research effort, the quality of the data needs to be assessed. One of the essential steps of the quality control process is population stratification: identifying the presence of genetic difference in individuals due to subpopulations. One of the common methods used to group genomes of individuals based on ancestry is principal component analysis (PCA). In this article, we propose a privacy-preserving framework which utilizes PCA to assign individuals to populations across multiple collaborators as part of the population stratification step. In our proposed client-server-based scheme, we initially let the server train a global PCA model on a publicly available genomic dataset which contains individuals from multiple populations. The global PCA model is later used to reduce the dimensionality of the local data by each collaborator (client). After adding noise to achieve local differential privacy (LDP), the collaborators send metadata (in the form of their local PCA outputs) about their research datasets to the server, which then aligns the local PCA results to identify the genetic differences among collaborators’ datasets. Our results on real genomic data show that the proposed framework can perform population stratification analysis with high accuracy while preserving the privacy of the research participants.

    more » « less
  5. Abstract Background Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many medical data classification tasks. Researchers that collect and combine datasets from various data custodians and jurisdictions can greatly benefit from the increased statistical power to support their analysis goals. However, combining data from different sources creates serious privacy concerns that need to be addressed. Methods In this paper, we propose two privacy-preserving protocols for performing logistic regression with the Newton–Raphson method in the estimation of parameters. Our proposals are based on secure Multi-Party Computation (MPC) and tailored to the honest majority and dishonest majority security settings. Results The proposed protocols are evaluated against both synthetic and real-world datasets in terms of efficiency and accuracy, and a comparison is made with the ordinary logistic regression. The experimental results demonstrate that the proposed protocols are highly efficient and accurate. Conclusions Our work introduces two iterative algorithms to enable the distributed training of a logistic regression model in a privacy-preserving manner. The implementation results show that our algorithms can handle large datasets from multiple sources. 
    more » « less
  6. Abstract Background

    Estimation of genetic relatedness, or kinship, is used occasionally for recreational purposes and in forensic applications. While numerous methods were developed to estimate kinship, they suffer from high computational requirements and often make an untenable assumption of homogeneous population ancestry of the samples. Moreover, genetic privacy is generally overlooked in the usage of kinship estimation methods. There can be ethical concerns about finding unknown familial relationships in third-party databases. Similar ethical concerns may arise while estimating and reporting sensitive population-level statistics such as inbreeding coefficients for the concerns around marginalization and stigmatization.


    Here, we present SIGFRIED, which makes use of existing reference panels with a projection-based approach that simplifies kinship estimation in the admixed populations. We use simulated and real datasets to demonstrate the accuracy and efficiency of kinship estimation. We present a secure federated kinship estimation framework and implement a secure kinship estimator using homomorphic encryption-based primitives for computing relatedness between samples in two different sites while genotype data are kept confidential. Source code and documentation for our methods can be found at


    Analysis of relatedness is fundamentally important for identifying relatives, in association studies, and for estimation of population-level estimates of inbreeding. As the awareness of individual and group genomic privacy is growing, privacy-preserving methods for the estimation of relatedness are needed. Presented methods alleviate the ethical and privacy concerns in the analysis of relatedness in admixed, historically isolated and underrepresented populations.

    Short Abstract

    Genetic relatedness is a central quantity used for finding relatives in databases, correcting biases in genome wide association studies and for estimating population-level statistics. Methods for estimating genetic relatedness have high computational requirements, and occasionally do not consider individuals from admixed ancestries. Furthermore, the ethical concerns around using genetic data and calculating relatedness are not considered. We present a projection-based approach that can efficiently and accurately estimate kinship. We implement our method using encryption-based techniques that provide provable security guarantees to protect genetic data while kinship statistics are computed among multiple sites.

    more » « less
  7. Providing provenance in scientific workflows is essential for reproducibility and auditability purposes. In this work, we propose a framework that verifies the correctness of the aggregate statistics obtained as a result of a genome-wide association study (GWAS) conducted by a researcher while protecting individuals’ privacy in the researcher’s dataset. In GWAS, the goal of the researcher is to identify highly associated point mutations (variants) with a given phenotype. The researcher publishes the workflow of the conducted study, its output, and associated metadata. They keep the research dataset private while providing, as part of the metadata, a partial noisy dataset (that achieves local differential privacy). To check the correctness of the workflow output, a verifier makes use of the workflow, its metadata, and results of another GWAS (conducted using publicly available datasets) to distinguish between correct statistics and incorrect ones. For evaluation, we use real genomic data and show that the correctness of the workflow output can be verified with high accuracy even when the aggregate statistics of a small number of variants are provided. We also quantify the privacy leakage due to the provided workflow and its associated metadata and show that the additional privacy risk due to the provided metadata does not increase the existing privacy risk due to sharing of the research results. Thus, our results show that the workflow output (i.e., research results) can be verified with high confidence in a privacy-preserving way. We believe that this work will be a valuable step towards providing provenance in a privacy-preserving way while providing guarantees to the users about the correctness of the results. 
    more » « less
  8. Abstract Concerns regarding inappropriate leakage of sensitive personal information as well as unauthorized data use are increasing with the growth of genomic data repositories. Therefore, privacy and security of genomic data have become increasingly important and need to be studied. With many proposed protection techniques, their applicability in support of biomedical research should be well understood. For this purpose, we have organized a community effort in the past 8 years through the integrating data for analysis, anonymization and sharing consortium to address this practical challenge. In this article, we summarize our experience from these competitions, report lessons learned from the events in 2020/2021 as examples, and discuss potential future research directions in this emerging field. 
    more » « less