We present a new volatility basis set (VBS) representation of aromatic secondary organic aerosol (SOA) for atmospheric chemistry models by fitting a statistical oxidation model with aerosol microphysics (SOM‐TOMAS) to results from laboratory chamber experiments. The resulting SOM‐VBS scheme also including previous work on SOA formation from semi‐ and intermediate volatile organic compounds (S/IVOCs) is implemented in the GEOS‐Chem chemical transport model and applied to simulation of observations from the Korea‐United States Air Quality Study (KORUS‐AQ) field campaign over South Korea in May–June 2016. Our SOM‐VBS scheme can simulate the KORUS‐AQ organic aerosol (OA) observations from aircraft and surface sites better than the default schemes used in GEOS‐Chem including for vertical profiles, diurnal cycle, and partitioning between hydrocarbon‐like OA and oxidized OA. Our results confirm the important contributions of oxidized primary OA and aromatic SOA found in previous analyses of the KORUS‐AQ data and further show a large contribution from S/IVOCs. Model source attribution of OA in surface air over South Korea indicates one third from domestic anthropogenic emissions, with a large contribution from toluene and xylenes, one third from external anthropogenic emissions, and one third from natural emissions.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013–2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.more » « less
-
Abstract As part of the WINTER (Wintertime Investigation of Transport, Emissions, and Reactivity) campaign, a Particle‐into‐Liquid Sampler with a fraction collector was flown aboard the National Center for Atmospheric Research C‐130 aircraft. Two‐minute integrated liquid samples containing dissolved fine particulate matter (PM1) species were collected and analyzed off‐line for the smoke marker levoglucosan using high‐performance anion‐exchange chromatography‐pulsed amperometric detection to compare levoglucosan with aerosol mass spectrometer (AMS) biomass burning markers and investigate the contribution from residential burning during the study. Levoglucosan was correlated with AMS organic aerosol (
R 2 = 0.49) and with carbon monoxide (CO;R 2 = 0.51) for all flights. Levoglucosan was not correlated with the inorganic smoke marker water‐soluble potassium but was correlated with the AMS markers ∆C2H4O2+(high resolution,R 2 = 0.60) and ∆m /z 60 (unit mass resolution,R 2 = 0.61). However, at low levoglucosan, AMS markers deviated potentially due to interferences from other sources or differences with the species captured by the AMS markers. Analysis of levoglucosan changes relative to carbon monoxide as plumes advected from source regions showed no systematic levoglucosan loss for plumes up to 20 hr old. Based on literature residential burning source ratios and measured levoglucosan, contributions of organic carbon (OC) due to residential burning were estimated. The contribution ranged from ~30 to 100% of the OC, with significant variability depending on the source ratio used; however, the results show that biomass burning was a significant PM1OC source across the entire sampling region. A GEOS‐Chem model simulation predicted significantly less smoke contribution.