skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Ruhui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computational inverse problems utilize a finite number of measurements to infer a discrete approximation of the unknown parameter function. With motivation from the setting of PDE-based optimization, we study the unique reconstruction of discretized inverse problems by examining the positivity of the Hessian matrix. What is the reconstruction power of a fixed number of data observations? How many parameters can one reconstruct? Here we describe a probabilistic approach, and spell out the interplay of the observation size (r) and the number of parameters to be uniquely identified (m). The technical pillar here is the random sketching strategy, in which the matrix concentration inequality and sampling theory are largely employed. By analyzing a randomly subsampled Hessian matrix, we attain a well-conditioned reconstruction problem with high probability. Our main theory is validated in numerical experiments, using an elliptic inverse problem as an example. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026