Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract State-of-the-Art models of Root System Architecture (RSA) do not allow simulating root growth around rigid obstacles. Yet, the presence of obstacles can be highly disruptive to the root system. We grew wheat seedlings in sealed petri dishes without obstacle and in custom 3D-printed rhizoboxes containing obstacles. Time-lapse photography was used to reconstruct the wheat root morphology network. We used the reconstructed wheat root network without obstacle to calibrate an RSA model implemented in the R-SWMS software. The root network with obstacles allowed calibrating the parameters of a new function that models the influence of rigid obstacles on wheat root growth. Experimental results show that the presence of a rigid obstacle does not affect the growth rate of the wheat root axes, but that it does influence the root trajectory after the main axis has passed the obstacle. The growth recovery time, i.e. the time for the main root axis to recover its geotropism-driven growth, is proportional to the time during which the main axis grows along the obstacle. Qualitative and quantitative comparisons between experimental and numerical results show that the proposed model successfully simulates wheat RSA growth around obstacles. Our results suggest that wheat roots follow patterns that could inspire the design of adaptive engineering flow networks.more » « less
-
null (Ed.)The discrete damage model presented in this paper accounts for 42 non-interacting crack microplanes directions. At the scale of the representative volume element, the free enthalpy is the sum of the elastic energy stored in the non-damaged bulk material and in the displacement jumps at crack faces. Closed cracks propagate in the pure mode II, whereas open cracks propagate in the mixed mode (I/II). The elastic domain is at the intersection of the yield surfaces of the activated crack families, and thus describes a non-smooth surface. In order to solve for the 42 crack densities, a Closest Point Projection algorithm is adopted locally. The representative volume element inelastic strain is calculated iteratively using the Newton–Raphson method. The proposed damage model was rigorously calibrated for both compressive and tensile stress paths. Finite element method simulations of triaxial compression tests showed that the transition between brittle and ductile behavior at increasing confining pressure can be captured. The cracks’ density, orientation, and location predicted in the simulations are in agreement with experimental observations made during compression and tension tests, and accurately show the difference between tensile and compressive strength. Plane stress tension tests simulated for a fiber-reinforced brittle material also demonstrated that the model can be used to interpret crack patterns, design composite structures and recommend reparation techniques for structural elements subjected to multiple damage mechanisms.more » « less