skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Xiaoning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available May 2, 2026
  3. Abstract Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination. 
    more » « less
  4. Abstract Roll-to-Roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based products, as opposed to sheet-to-sheet (S2S) approach suited for low-volume work. However, meeting the tight alignment tolerance requirements of additive multi-layer printed electronics specified by device resolution that is usually at micrometer scale has become a major challenge in R2R flexible electronics printing, preventing the fabrication technology from being transferred from conventional S2S to high-speed R2R production. Print registration in a R2R process is to align successive print patterns on the flexible substrate and to ensure quality printed devices through effective control of various process variables. Conventional model-based control methods require an accurate web-handling dynamic model and real-time tension measurements to ensure control laws can be faithfully derived. For complex multistage R2R systems, physics-based state-space models are difficult to derive, and real-time tension measurements are not always acquirable. In this paper, we present a novel data-driven model predictive control (DD-MPC) method to minimize the multistage register errors effectively. We show that the DD-MPC can handle multi-input and multi-output systems and obtain the plant model from sensor data via an Eigensystem Realization Algorithm (ERA) and Observer Kalman filter identification (OKID) system identification method. In addition, the proposed control scheme works for systems with partially measurable system states. 
    more » « less
  5. In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected from 84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing. 
    more » « less
  6. Manufacturing has adopted technologies such as automation, robotics, industrial Internet of Things (IoT), and big data analytics to improve productivity, efficiency, and capabilities in the production environment. Modern manufacturing workers not only need to be adept at the traditional manufacturing technologies but also ought to be trained in the advanced data-rich computer-automated technologies. This study analyzes the data science and analytics (DSA) skills gap in today’s manufacturing workforce to identify the critical technical skills and domain knowledge required for data science and intelligent manufacturing-related jobs that are highly in-demand in today’s manufacturing industry. The gap analysis conducted in this paper on Emsi job posting and profile data provides insights into the trends in manufacturing jobs that leverage data science, automation, cyber, and sensor technologies. These insights will be helpful for educators and industry to train the next generation manufacturing workforce. The main contribution of this paper includes (1) presenting the overall trend in manufacturing job postings in the U.S., (2) summarizing the critical skills and domain knowledge in demand in the manufacturing sector, (3) summarizing skills and domain knowledge reported by manufacturing job seekers, (4) identifying the gaps between demand and supply of skills and domain knowledge, and (5) recognize opportunities for training and upskilling workforce to address the widening skills and knowledge gap. 
    more » « less
  7. Abstract A machine learning (ML) guided approach is presented for the accelerated optimization of chemical vapor deposition (CVD) synthesis of 2D materials toward the highest quality, starting from low‐quality or unsuccessful synthesis conditions. Using 26 sets of these synthesis conditions as the initial training dataset, our method systematically guides experimental synthesis towards optoelectronic‐grade monolayer MoS2flakes. A‐exciton linewidth (σA) as narrow as 38 meV could be achieved in 2D MoS2flakes after only an additional 35 trials (reflecting 15% of the full factorial design dataset for training purposes). In practical terms, this reflects a decrease of the possible experimental time to optimize the parameters from up to one year to about two months. This remarkable efficiency was achieved by formulating a constrained sequencing optimization problem solved via a combination of constraint learning and Bayesian Optimization with the narrowness of σAas the single target metric. By employing graph‐based semi‐supervised learning with data acquired through a multi‐criteria sampling method, the constraint model effectively delineates and refines the feasible design space for monolayer flake production. Additionally, the Gaussian Process regression effectively captures the relationships between synthesis parameters and outcomes, offering high predictive capability along with a measure of prediction uncertainty. This method is scalable to a higher number of synthesis parameters and target metrics and is transferrable to other materials and types of reactors. This study envisions that this method will be fundamental for CVD and similar techniques in the future. 
    more » « less