Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 18, 2025
-
Pseudocapacitors offer a unique strategy to combine the rapid charging rates of capacitors with the high energy density of batteries, potentially offering a unique solution to energy storage challenges. Bending and twisting aromatic building blocks to form contorted aromatics have emerged as a new strategy to create organic materials with unique and tunable properties. This paper studies the union between these two concepts: molecular contortion and organic pseudocapacitors. The recent development of fully organic pseudocapacitors, including high-performing devices based on perylene diimide organic redox units, introduces the added benefit of low cost, synthetic tunability, and increased flexibility. We synthesize a series of polymers by joining perylene diimide with various linkers that incorporate a helical moiety from [4]helicene to [6]helicene into the molecular backbone. We prepare three new electroactive polymers that incorporate benzene, naphthalene, and anthracene linkers and study their pseudocapacitive performance to infer key design principles for organic pseudocapacitors. Our results show that the naphthalene linker results in the most strongly coupled redox centers and displays the highest pseudocapacitance of 292 ± 47 F/g at 0.5 A/g. To understand the pseudocapacitive behavior, we synthesized dimer model compounds to further probe the electronic structure of these materials through electronic absorption spectroscopy and first-principles calculations. Our results suggest that the identity of the aromatic linker influences the contortion between neighboring perylene diimide units, the coupling between redox centers, and their relative angles and distances. We find that competing molecular design factors must be carefully optimized to generate high-performance devices. Overall, this study provides key insights into molecular design strategies for generating high-performing organic pseudocapacitor materials.more » « lessFree, publicly-accessible full text available May 14, 2025
-
Free, publicly-accessible full text available January 10, 2025
-
Abstract Incorporating perylene diimide (PDI) units into helicene structures has become a useful strategy for giving access to non‐planar electron acceptors as well as a method of creating molecules with unique and intriguing chiroptical properties. This minireview describes this fusion of PDIs with helicenes.
-
Redox-active two-dimensional polymers (RA-2DPs) are promising lithium battery organic cathode materials due to their regular porosities and high chemical stabilities. However, weak electrical conductivities inherent to the non-conjugated molecular motifs used thus far limit device performance and the practical relevance of these materials. We herein address this problem by developing a modular approach to construct π-conjugated RA-2DPs with a new polycyclic aromatic redox-active building block PDI-DA. Efficient imine-condensation between PDI-DA and two polyfunctional amine nodes followed by quantitative alkyl chain removal produced RA-2DPs TAPPy-PDI and TAPB-PDI as conjugated, porous, polycrystalline networks. In-plane conjugation and permanent porosity endow these materials with high electrical conductivity and high ion diffusion rates. As such, both RA-2DPs function as organic cathode materials with good rate performance and excellent cycling stability. Importantly, the improved design enables higher areal mass-loadings than were previously available, which drives a practical demonstration of TAPPy-PDI as the power source for a series of LED lights. Collectively, this investigation discloses viable synthetic methodologies and design principles for the realization of high-performance organic cathode materials.more » « less
-
Abstract Ring‐opening metathesis polymerization (ROMP) has become one of the most important living polymerizations. Cyclopropenes (CPEs) remain underexplored for ROMP. Described here is that the simple swap of 1‐methyl to 1‐phenyl on 1‐(benzoyloxymethyl)CPEs elicited strikingly different modes of reactivity, switching from living polymerization to either selective single‐addition or living alternating ROMP. The distinct reactivity stems from differences in steric repulsions at the Ru alkylidene after CPE ring opening. Possible olefin or oxygen chelation from ring‐opened CPE substituents was also observed to significantly affect the rate of propagation. These results demonstrate the versatility of CPEs as a new class of monomers for ROMP, provide mechanistic insights for designing new monomers with rare single‐addition reactivity, and generate a new functionalizable alternating copolymer scaffold with controlled molecular weight and low dispersity.