skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jindal, Amisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students’ (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2) what types of in-game features (i.e. student in-game behaviors, math anxiety, mathematical strategies) were associated with student math knowledge scores. The results indicated that the Random Forest algorithm showed the best performance (i.e. the accuracy of models, error measures) in predicting posttest math knowledge scores among the seven algorithms employed. Out of 37 features included in the model, the validity of the students’ first mathematical transformation was the most predictive of their posttest math knowledge scores. Implications for game learning analytics and supporting students’ algebraic learning are discussed based on the findings. 
    more » « less