Mechanistic photosynthesis models are at the heart of terrestrial biosphere models (TBMs) simulating the daily, monthly, annual and decadal rhythms of carbon assimilation (
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Jeremiah (1)
-
Bridges, Robert A. (1)
-
Fisher, Rosie A. (1)
-
Johnson, Abbey L. (1)
-
Lu, Dan (1)
-
Ricciuto, Daniel M. (1)
-
Rogers, Alistair (1)
-
Serbin, Shawn P. (1)
-
Walker, Anthony P. (1)
-
Ye, Ming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A ). These models are founded on robust mathematical hypotheses that describe howA responds to changes in light and atmospheric CO2concentration. Two predominant photosynthesis models are in common usage: Farquhar (FvCB) and Collatz (CBGB). However, a detailed quantitative comparison of these two models has never been undertaken. In this study, we unify the FvCB and CBGB models to a common parameter set and use novel multi‐hypothesis methods (that account for both hypothesis and parameter variability) for process‐level sensitivity analysis. These models represent three key biological processes: carboxylation, electron transport, triose phosphate use (TPU) and an additional model process: limiting‐rate selection. Each of the four processes comprises 1–3 alternative hypotheses giving 12 possible individual models with a total of 14 parameters. To broaden inference, TBM simulations were run and novel, high‐resolution photosynthesis measurements were made. We show that parameters associated with carboxylation are the most influentialparameters but also reveal the surprising and marked dominance of the limiting‐rate selectionprocess (accounting for 57% of the variation inA vs. 22% for carboxylation). The limiting‐rate selection assumption proposed by CBGB smooths the transition between limiting ratesmore »