skip to main content

Search for: All records

Creators/Authors contains: "Johnson, Brian K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The need to create more viable soft sensors is increasing in tandem with the growing interest in soft robots. Several sensing methods, like capacitive stretch sensing and intrinsic capacitive self-sensing, have proven to be useful when controlling soft electro-hydraulic actuators, but are still problematic. This is due to challenges around high-voltage electronic interference or the inability to accurately sense the actuator at higher actuation frequencies. These issues are compounded when trying to sense and control the movement of a multiactuator system. To address these shortcomings, we describe a two-part magnetic sensing mechanism to measure the changes in displacement of an electro-hydraulic (HASEL) actuator. Our magnetic sensing mechanism can achieve high accuracy and precision for the HASEL actuator displacement range, and accurately tracks motion at actuation frequencies up to 30 Hz, while being robust to changes in ambient temperature and relative humidity. The high accuracy of the magnetic sensing mechanism is also further emphasized in the gripper demonstration. Using this sensing mechanism, we can detect submillimeter difference in the diameters of three tomatoes. Finally, we successfully perform closed-loop control of one folded HASEL actuator using the sensor, which is then scaled into a deformable tilting platform of six units (one HASEL actuator and one sensor) that control a desired end effector position in 3D space. This work demonstrates the first instance of sensing electro-hydraulic deformation using a magnetic sensing mechanism. The ability to more accurately and precisely sense and control HASEL actuators and similar soft actuators is necessary to improve the abilities of soft, robotic platforms. 
    more » « less
  2. We present a numerical methodology to estimate the transient fault currents and to simulate the remote sensing of transient fault information embedded in the magnetic field emissions caused by inter-turn shorts in 60 Hz air-core reactors, thru a magneto quasi-static (MQS) field approximation in the method of Finite-Difference Time-Domain (FDTD) in 2-dimensional (2D) space. The MQS 2D FDTD fields of reactor in normal operation are scaled by correlation against an equivalent circuit model that is derived from application of basic physics principles to parameters of the 3D air-core reactor. The proposed multi-scale quasi-static modeling methodology, based on the reduced c modification, provides fine-feature access down to the single-wire level and can efficiently estimate the transient fault fields and currents due to turn-to-turn short in a reactor with core height in several meters, core diameter in meters, wire diameter in millimeters, and number of turns in the thousands, at 60 Hz; this is accomplished by using computational resources of a typical laptop computer within seconds or minutes, as opposed to days that would be otherwise required without the reduced c modification. 
    more » « less
  3. null (Ed.)