skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 2, 2025
  2. Abstract We explore the potential for repeat‐pass SAR Interferometry (InSAR) correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the United States Geological Survey, and because Hawai'i is a SAR supersite, where space agencies have offered open radar data sets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS‐2 (L‐band), Sentinel‐1 (C‐band), and COSMO‐SkyMed (X‐band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post‐emplacement contraction of flows. Post‐emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat‐pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin. 
    more » « less
  3. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: PSV10: A Global Data Set for 0–10 Ma Time‐Averaged Field and Paleosecular Variation Studies 
    more » « less
  4. Abstract The western North American Great Basin's Carlin-type deposits represent the largest accumulation of gold in the Northern Hemisphere. The controversy over their origins echoes the debate between Neptunists and Plutonists at the birth of modern geology: were the causative processes meteoric or magmatic? Sulfur isotopes have long been considered key to decoding metal cycling in the Earth's crust, but previous studies of Carlin-type pyrite lacked the spatial resolution to quantify differences among the numerous generations of sulfide mineralization. We developed a new dual-method, nanoscale approach to examine the fine-grained ore pyrite. The δ34S of the ore pyrite varies systematically with Au concentration at the nanoscale, indicating that both magmatic and meteoric fluids contributed during mineralization, but the magmas brought the gold. Repeated oscillations in fluid ratios upgraded the metal content, resulting in high gold endowment. Our results demonstrate that high-spatial-resolution studies are key to elucidate the spatiotemporal evolution of complex hydrothermal systems. 
    more » « less