skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Grace E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brown, Sam Paul (Ed.)
    Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. TheVibrio choleraepathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses ofV. choleraebiofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing signaling is uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. Abstract Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1–5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage–host biology and inter-prophage competition. 
    more » « less