- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Armstrong, Zoe (2)
-
Feng, Li (2)
-
Johnson, Kelley (2)
-
Li, Qiaobin (2)
-
Quadir, Mohiuddin (2)
-
Scheiwiller, Allison (2)
-
Yang, Zhongyu (2)
-
Brown, William (1)
-
Chen, Bingcan (1)
-
Gao, Runxiang (1)
-
Jordahl, Drew Jordahl (1)
-
Lenertz, Mary (1)
-
Li, Hui (1)
-
Liu, Wei (1)
-
MacRae, Austin (1)
-
Mao, Haiyan (1)
-
Pan, Yanxiong (1)
-
Shen, Patrick (1)
-
Ugrinov, Angel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
Farha, Omar (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jordahl, Drew Jordahl; Armstrong, Zoe; Li, Qiaobin; Gao, Runxiang; Liu, Wei; Johnson, Kelley; Brown, William; Scheiwiller, Allison; Feng, Li; Ugrinov, Angel; et al (, ACS applied materials interfaces)Farha, Omar (Ed.)Metal-Organic Frameworks (MOFs) are advanced platforms for enzyme immobilization. Enzymes can be entrapped via either diffusion (into pre-formed MOFs) or co-crystallization. Enzyme co-crystallization with specific metals/ligands in the aqueous phase, also known as biomineralization, minimizes the enzyme loss as compared to organic phase co-crystallization, removes the size limitation on enzymes and substrates, and can potentially broaden the application of enzyme@MOF composites. However, not all enzymes are stable/functional in the presence of excess metal ions and/or ligands currently available for co-crystallization. Furthermore, most current biomineralization-based MOFs have limited (acid-) pH stability, making it necessary to explore other metal-ligand combinations that can also immobilize enzymes. Here, we report our discovery on the combination of five metal ions and two ligands that can form biocomposites with two model enzymes differing in size and hydrophobicity in the aqueous phase under ambient conditions. Surprisingly, most of the formed composites are single- or multi- phase crystals even though the reaction phase is aqueous, with the rest as amorphous powders. All 20 enzyme@MOF composites showed good to excellent reusability, and were stable under weakly acidic pHs. The stability under weakly basic conditions depended on the selection of enzyme and metal-ligand combinations, yet for both enzymes, 3-4 MOFs offered decent stability under basic conditions. This work initiates the expansion of the current “library” of metal-ligand selection for encapsulating/biomineralizing large enzymes/enzyme clusters, leading to customized encapsulation of enzymes according to enzymes stability, functionality, and optimal pH.more » « less