skip to main content


Search for: All records

Creators/Authors contains: "Johnson, Steven G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Capillary breakup of cores is an exclusive approach to fabricating fiber-integrated optoelectronics and photonics. A physical understanding of this fluid-dynamic process is necessary for yielding the desired solid-state fiber-embedded multimaterial architectures by design rather than by exploratory search. We discover that the nonlinearly complex and, at times, even chaotic capillary breakup of multimaterial fiber cores becomes predictable when the fiber is exposed to the spatiotemporal temperature profile, imposing a viscosity modulation comparable to the breakup wavelength. The profile acts as a notch filter, allowing only a single wavelength out of the continuous spectrum to develop predictably, following Euler-Lagrange dynamics. We argue that this understanding not only enables designing the outcomes of the breakup necessary for turning it into a technology for materializing fiber-embedded functional systems but also positions a multimaterial fiber as a universal physical simulator of capillary instability in viscous threads.

     
    more » « less
  2. Abstract We report an inverse-designed, high numerical aperture (∼0.44), extended depth of focus (EDOF) meta-optic, which exhibits a lens-like point spread function (PSF). The EDOF meta-optic maintains a focusing efficiency comparable to that of a hyperboloid metalens throughout its depth of focus. Exploiting the extended depth of focus and computational post processing, we demonstrate broadband imaging across the full visible spectrum using a 1 mm, f/1 meta-optic. Unlike other canonical EDOF meta-optics, characterized by phase masks such as a log-asphere or cubic function, our design exhibits a highly invariant PSF across ∼290 nm optical bandwidth, which leads to significantly improved image quality, as quantified by structural similarity metrics. 
    more » « less
  3. The terahertz region of the electromagnetic spectrum has been the least utilized owing to inadequacies of available sources. We introduce a compact, widely frequency-tunable, extremely bright source of terahertz radiation: a gas-phase molecular laser based on rotational population inversions optically pumped by a quantum cascade laser. By identifying the essential parameters that determine the suitability of a molecule for a terahertz laser, almost any rotational transition of almost any molecular gas can be made to lase. Nitrous oxide is used to illustrate the broad tunability over 37 lines spanning 0.251 to 0.955 terahertz, each with kilohertz linewidths. Our analysis shows that laser lines spanning more than 1 terahertz with powers greater than 1 milliwatt are possible from many molecular gases pumped by quantum cascade lasers.

     
    more » « less
  4. Abstract

    Meta‐optics have rapidly become a major research field within the optics and photonics community, strongly driven by the seemingly limitless opportunities made possible by controlling optical wavefronts through interaction with arrays of sub‐wavelength scatterers. As more and more modalities are explored, the design strategies to achieve desired functionalities become increasingly demanding, necessitating more advanced design techniques. Herein, the inverse design approach is utilized to create a set of single‐layer meta‐optics that simultaneously focus light and shape the spectra of focused light without using any filters. Thus, both spatial and spectral properties of the meta‐optics are optimized, resulting in spectra that mimic the color matching functions of the CIE 1931 XYZ color space, which links the spectral distribution of a light source to the color perception of a human eye. Experimental demonstrations of these meta‐optics show qualitative agreement with the theoretical predictions and help elucidate the focusing mechanism of these devices.

     
    more » « less