skip to main content


Search for: All records

Creators/Authors contains: "Johnson, Taylor T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2025
  2. Free, publicly-accessible full text available June 30, 2025
  3. Recent advancements in federated learning (FL) have greatly facilitated the development of decentralized collaborative applications, particularly in the domain of Artificial Intelligence of Things (AIoT). However, a critical aspect missing from the current research landscape is the ability to enable data-driven client models with symbolic reasoning capabilities. Specifically, the inherent heterogeneity of participating client devices poses a significant challenge, as each client exhibits unique logic reasoning properties. Failing to consider these device-specific specifications can result in critical properties being missed in the client predictions, leading to suboptimal performance. In this work, we propose a new training paradigm that leverages temporal logic reasoning to address this issue. Our approach involves enhancing the training process by incorporating mechanically generated logic expressions for each FL client. Additionally, we introduce the concept of aggregation clusters and develop a partitioning algorithm to effectively group clients based on the alignment of their temporal reasoning properties. We evaluate the proposed method on two tasks: a real-world traffic volume prediction task consisting of sensory data from fifteen states and a smart city multi-task prediction utilizing synthetic data. The evaluation results exhibit clear improvements, with performance accuracy improved by up to 54% across all sequential prediction models.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  4. Free, publicly-accessible full text available April 14, 2025
  5. This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes, rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments. 
    more » « less
  6. Neural network approximations have become attractive to compress data for automation and autonomy algorithms for use on storage-limited and processing-limited aerospace hardware. However, unless these neural network approximations can be exhaustively verified to be safe, they cannot be certified for use on aircraft. An example of such systems is the unmanned Airborne Collision Avoidance System (ACAS) Xu, which is a very popular benchmark for open-loop neural network control system verification tools. This paper proposes a new closed-loop extension of this benchmark, which consists of a set of 10 closed-loop properties selected to evaluate the safety of an ownship aircraft in the presence of a co-altitude intruder aircraft. These closed-loop safety properties are used to evaluate five of the 45 neural networks that comprise the ACAS Xu benchmark (corresponding to co-altitude cases) as well as the switching logic between the five neural networks. The combination of nonlinear dynamics and switching between five neural networks is a challenging verification task accomplished with star-set reachability methods in two verification tools. The safety of the ownship aircraft under initial position uncertainty is guaranteed in every scenario proposed. 
    more » « less