- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0011000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bao, Tianshu (2)
-
Johnson, Taylor Thomas (2)
-
Ji, Junyi (1)
-
Jia, Xiaowei (1)
-
Wei, Hua (1)
-
Work, Daniel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios.more » « less
-
Bao, Tianshu; Wei, Hua; Ji, Junyi; Work, Daniel; Johnson, Taylor Thomas (, Springer Nature Switzerland)
An official website of the United States government
