skip to main content

Search for: All records

Creators/Authors contains: "Johnson, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2022
  2. The benefit of integrating batches of genomic data to increase statistical power is often hindered by batch effects, or unwanted variation in data caused by differences in technical factors across batches. It is therefore critical to effectively address batch effects in genomic data to overcome these challenges. Many existing methods for batch effects adjustment assume the data follow a continuous, bell-shaped Gaussian distribution. However in RNA-seq studies the data are typically skewed, over-dispersed counts, so this assumption is not appropriate and may lead to erroneous results. Negative binomial regression models have been used previously to better capture the properties ofmore »counts. We developed a batch correction method, ComBat-seq, using a negative binomial regression model that retains the integer nature of count data in RNA-seq studies, making the batch adjusted data compatible with common differential expression software packages that require integer counts. We show in realistic simulations that the ComBat-seq adjusted data results in better statistical power and control of false positives in differential expression compared to data adjusted by the other available methods. We further demonstrated in a real data example that ComBat-seq successfully removes batch effects and recovers the biological signal in the data.« less
  3. Genomic data are often produced in batches due to practical restrictions, which may lead to unwanted variation in data caused by discrepancies across processing batches. Such "batch effects" often have negative impact on downstream biological analysis and need careful consideration. In practice, batch effects are usually addressed by specifically designed software, which merge the data from different batches, then estimate batch effects and remove them from the data. Here we focus on classification and prediction problems, and propose a different strategy based on ensemble learning. We first develop prediction models within each batch, then integrate them through ensemble weighting methods.more »In contrast to the typical approach of removing batch effects from the merged data, our method integrates predictions rather than data. We provide a systematic comparison between these two strategies, using studies targeting diverse populations infected with tuberculosis. In one study, we simulated increasing levels of heterogeneity across random subsets of the study, which we treat as simulated batches. We then use the two methods to develop a genomic classifier for the binary indicator of disease status. We evaluate the accuracy of prediction in another independent study targeting a different population cohort. We observed a turning point in the level of heterogeneity, after which our strategy of integrating predictions yields better discrimination in independent validation than the traditional method of integrating the data. These observations provide practical guidelines for handling batch effects in the development and evaluation of genomic classifiers.« less