Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR.more » « less