The future
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochet neutron background characterization using He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the$$^3$$ Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness ofmore » -
Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for
decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$$0\nu \beta \beta $$ crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$${\mathrm{TeO}}_{2}$$ result of the search for$$3{\mathrm{rd}}$$ , corresponding to a tonne-year of$$0\nu \beta \beta $$ exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$\mathrm{TeO}_{2}$$ decay in$$0\nu \beta \beta $$ ever conducted . We present the current status of CUORE search for$${}^{130}\mathrm{Te}$$ with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$$0\nu \beta \beta $$ $${}^{130}\mathrm{Te}$$ decay half-life and decay to excited states of$$2\nu \beta \beta $$ , studies performed using an exposure of 300.7 kg yr.$${}^{130}\mathrm{Xe}$$ -
Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25 years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which canmore »Free, publicly-accessible full text available April 7, 2023
-
Abstract The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available at
https://github.com/project8/locust_mc . -
Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0more »