Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The State of Arizona in the south-western United States supports a high diversity of insects. Digitised occurrence records, especially from preserved specimens in natural history collections, are an important and growing resource to understand biodiversity and biogeography. Underlying bias in how insects are collected and what that means for interpreting patterns of insect diversity is largely untested. To explore the effects of insect collecting bias in Arizona, the State was regionalised into specific areas. First, the entire State was divided into broad biogeographic areas by ecoregion. Second, the 81 tallest mountain ranges were mapped on to the State. The distribution of digitised records across these areas were then examined. A case study of surveying the beetles (Insecta, Coleoptera) of the Sand Tank Mountains is presented. The Sand Tanks are a low-elevation range in the Lower Colorado River Basin subregion of the Sonoran Desert from which a single beetle record was published before this study. The number of occurrence records and collecting events are very unevenly distributed throughout Arizona and do not strongly correlate with the geographic size of areas. Species richness is estimated for regions in Arizona using rarefaction and extrapolation. Digitised records from the disproportionately highly collected areas in Arizona represent at best 70% the total insect diversity within them. We report a total of 141 species of Coleoptera from the Sand Tank Mountains, based on 914 digitised voucher specimens. These specimens add important new records for taxa that were previously unavailable in digitised data and highlight important biogeographic ranges. Possible underlying mechanisms causing bias are discussed and recommendations are made for future targeted collecting of under-sampled regions. Insect species diversity is apparently at best 70% documented for the State of Arizona with many thousands of species not yet recorded. The Chiricahua Mountains are the most densely sampled region of Arizona and likely contain at least 2,000 species not yet vouchered in online data. Preliminary estimates for species richness of Arizona are at least 21,000 and likely much higher. Limitations to analyses are discussed which highlight the strong need for more insect occurrence data.more » « less
-
null (Ed.)Solid fuel combustion experiments aboard the ISS examine the effects of confinement on a concurrent, purely-forced-flow flame spread in microgravity environment. The results for a thin, cotton-fiberglass-blended textile fabric fuel are presented. Flat baffles of differing materials are used to alter the radiative boundary conditions with transparent polycarbonate, black anodized aluminum (reflectance ~ 0), and highly polished aluminum (reflectance ~ 1). The baffles are parallel to the fuel sheet and placed symmetrically on each side. The inter-baffle distance is varied to change the boundary conditions for the flow. In all tests, samples are ignited at the upstream leading edge and allowed to burn to completion. Results show that the flame reaches a steady length and spread rate at low flow speeds (< 15 cm/s) for all tested inter-baffle distances. As the distance decreases, the flame length and spread rate first increase then decrease showing an optimal inter-baffle distance. For all baffle types, the flame either fails to ignite or extinguishes before reaching the end of the sample when the inter-baffle distance is too small (~ 1 cm). This is attributed to the reduction of oxygen supply to the flame zone and heat loss to the baffles. The results also show at the same inter-baffle distance, flame length and spread rate are highest for polished aluminum baffles, and lowest for transparent polycarbonate baffles. The differences are most prominent at intermediate tested baffle distances. While the radiative heat feedback from the baffles is expected to increase when the baffle distance decreases, the combustion is limited by the reduced oxygen supply. Near this limit, flame lengths and spread rates are similar for all baffle types.more » « less
-
Generating regional checklists for insects is frequently based on combining data sources ranging from literature and expert assertions that merely imply the existence of an occurrence to aggregated, standard-compliant data of uniquely identified specimens. The increasing diversity of data sources also means that checklist authors are faced with new responsibilities, effectively acting as filterers to select and utilize an expert-validated subset of all available data. Authors are also faced with the technical obstacle to bring more occurrences into Darwin Core-based data aggregation, even if the corresponding specimens belong to external institutions. We illustrate these issues based on a partial update of the Kimsey et al. 2017 checklist of darkling beetles - Tenebrionidae sec. Bousquet et al. 2018 - inhabiting the Algodones Dunes of California. Our update entails 54 species-level concepts for this group and region, of which 31 concepts were found to be represented in three specimen-data aggregator portals, based on our interpretations of the aggregators' data. We reassess the distributions and biogeographic affinities of these species, focusing on taxa that are precinctive (highly geographically restricted) to the Lower Colorado River Valley in the context of recent dune formation from the Colorado River. Throughout, we apply taxonomic concept labels (taxonomic name according to source) to contextualize preferred name usages, but also show that the identification data of aggregated occurrences are very rarely well-contextualized or annotated. Doing so is a pre-requisite for publishing open, dynamic checklist versions that finely accredit incremental expert efforts spent to improve the quality of checklists and aggregated occurrence data.more » « less
-
Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Abstract Despite the devastating impact of the lionfish ( Pterois volitans ) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish’s long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p- values > 0.01, and t-test p- values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.more » « less
-
Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5M⊙and 1.2–2.0M⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.more » « lessFree, publicly-accessible full text available July 26, 2025