Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 17, 2025
-
Abstract We report noncovalent assemblies of iRGD peptides and methylene blue dyes via electrostatic and hydrophobic stacking. These resulting nanomaterials could bind to cancer cells, image them with photoacoustic signal, and then treat them via photodynamic therapy. We first assessed the optical properties and physical properties of the materials. We then evaluated their utility for live cell targeting, in vivo imaging, and in vivo photodynamic toxicity. We tuned the performance of iRGD by adding aspartic acid (DD) or tryptophan doublets (WW) to the peptide to promote electrostatic or hydrophobic stacking with methylene blue, respectively. The iRGD-DD led to 150-nm branched nanoparticles, but iRGD-WW produced 200-nm nano spheres. The branched particles had an absorbance peak that was redshifted to 720 nm suitable for photoacoustic signal. The nanospheres had a peak at 680 nm similar to monomeric methylene blue. Upon continuous irradiation, the nanospheres and branched nanoparticles led to a 116.62% and 94.82% increase in reactive oxygen species in SKOV-3 cells relative to free methylene blue at isomolar concentrations suggesting photodynamic toxicity. Targeted uptake was validated via competitive inhibition. Finally, we used in vivo bioluminescent signal to monitor tumor burden and the effect of for photodynamic therapy: The nanospheres had little impact versus controls (
p = 0.089), but the branched nanoparticles slowed SKOV-3 tumor burden by 75.9% (p < 0.05). -
Abstract Chemical pesticide delivery is a fundamental aspect of agriculture. However, the extensive use of pesticides severely endangers the ecosystem because they accumulate on crops, in soil, as well as in drinking and groundwater. New frontiers in nano-engineering have opened the door for precision agriculture. We introduced Tobacco mild green mosaic virus (TMGMV) as a viable delivery platform with a high aspect ratio and favorable soil mobility. In this work, we assess the use of TMGMV as a chemical nanocarrier for agriculturally relevant cargo. While plant viruses are usually portrayed as rigid/solid structures, these are “dynamic materials,” and they “breathe” in solution in response to careful adjustment of pH or bathing media [e.g., addition of solvent such as dimethyl sulfoxide (DMSO)]. Through this process, coat proteins (CPs) partially dissociate leading to swelling of the nucleoprotein complexes—allowing for the infusion of active ingredients (AI), such as pesticides [e.g., fluopyram (FLP), clothianidin (CTD), rifampicin (RIF), and ivermectin (IVM)] into the macromolecular structure. We developed a “breathing” method that facilitates inter-coat protein cargo loading, resulting in up to ~ 1000 AIs per virion. This is of significance since in the agricultural setting, there is a need to develop nanoparticle delivery strategies where the AI is not chemically altered, consequently avoiding the need for regulatory and registration processes of new compounds. This work highlights the potential of TMGMV as a pesticide nanocarrier in precision farming applications; the developed methods likely would be applicable to other protein-based nanoparticle systems.
-
Objective: To develop a novel technique for localizing and reconstructing the greater palatine artery (GPA) using three-dimensional (3D) technology.
Methods: A miniaturized intraoral ultrasound transducer was used to imaging landmarks including the GPA, gingival margin (GM), and palatal masticatory mucosa (PMM). A 5-mm-thick solid hydrogel couplant was integrated to replace traditional ultrasound gel and avoid bubbles when moving the transducer.
Results: A panorama image provided the relative localization of landmarks including the GPA, PMM, and hard palate. Short- and long-axis imaging of GPA was performed in five subjects including 3D mapping of GPA branches and surrounding tissues in a volume of 10 mm × 8 mm × 10 mm. Full-mouth Doppler imaging was also demonstrated on both the dorsal and ventral tongue as well as buccal mucosa and sublingual region on two subjects.
Conclusions: This study can measure the vertical distance from the GM to the GPA and depth from PMM to GPA and visualize the GPA localization in a 3D manner, which is critical to evaluate the available volume of palatal donor tissues and avoid sectioning of GPA during surgical harvesting of the tissues. Finally, the transducer’s small size facilitates full-mouth Doppler imaging with the potential to improve the assessment, diagnosis, and management of oral mucosa.
-
Triggering lysosome‐regulated immunogenic cell death (ICD, e.g., pyroptosis and necroptosis) with nanomedicines is an emerging approach for turning an “immune‐cold” tumor “hot”—a key challenge faced by cancer immunotherapies. Proton sponge such as high‐molecular‐weight branched polyethylenimine (PEI) is excellent at rupturing lysosomes, but its therapeutic application is hindered by uncontrollable toxicity due to fixed charge density and poor understanding of resulted cell death mechanism. Here, a series of proton sponge nano‐assemblies (PSNAs) with self‐assembly controllable surface charge density and cell cytotoxicity are created. Such PSNAs are constructed via low‐molecular‐weight branched PEI covalently bound to self‐assembling peptides carrying tetraphenylethene pyridinium (PyTPE, an aggregation‐induced emission‐based luminogen). Assembly of PEI assisted by the self‐assembling peptide‐PyTPE leads to enhanced surface positive charges and cell cytotoxicity of PSNA. The self‐assembly tendency of PSNAs is further optimized by tuning hydrophilic and hydrophobic components within the peptide, thus resulting in the PSNA with the highest fluorescence, positive surface charge density, cell uptake, and cancer cell cytotoxicity. Systematic cell death mechanistic studies reveal that the lysosome rupturing‐regulated pyroptosis and necroptosis are at least two causes of cell death. Tumor cells undergoing PSNA‐triggered ICD activate immune cells, suggesting the great potential of PSNAs to trigger anticancer immunity.more » « lessFree, publicly-accessible full text available February 27, 2025