skip to main content

Search for: All records

Creators/Authors contains: "Jones, Benjamin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Globally, coastal communities experience flood hazards that are projected to worsen from climate change and sea level rise. The 100-year floodplain or record flood are commonly used to identify risk areas for planning purposes. Remote communities often lack measured flood elevations and require innovative approaches to estimate flood elevations. This study employs observation-based methods to estimate the record flood elevation in Alaska communities and compares results to elevation models, infrastructure locations, and sea level rise projections. In 46 analyzed communities, 22% of structures are located within the record floodplain. With sea level rise projections, this estimate increases to 30–37% of structures by 2100 if structures remain in the same location. Flood exposure is highest in western Alaska. Sea level rise projections suggest northern Alaska will see similar flood exposure levels by 2100 as currently experienced in western Alaska. This evaluation of record flood height, category, and history can be incorporated into hazard planning documents, providing more context for coastal flood exposure than previously existed for Alaska. This basic flood exposure method is transferable to other areas with similar mapping challenges. Identifying current and projected hazardous zones is essential to avoid unintentional development in floodplains and improve long-term safety.

    more » « less
  2. Abstract

    In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.

    more » « less
  3. Abstract

    Northern high-latitudes are projected to get warmer and wetter, which will affect rates of permafrost thaw and mechanisms by which thaw occurs. To better understand the impact of rain, as well as other factors such as snow depth, canopy cover, and microtopography, we instrumented a degrading permafrost plateau in south-central Alaska with high-resolution soil temperature sensors. The site contains ecosystem-protected permafrost, which persists in unfavorable climates due to favorable ecologic conditions. Our study (2020–2022) captured three of the snowiest years and three of the four wettest years since the site was first studied in 2015. Average thaw rates along an across-site transect increased nine-fold from 6 ± 5 cm yr−1(2015–2020) to 56 ± 12 cm yr−1(2020–2022). This thaw was not uniform. Hummock locations, residing on topographic high points with relatively dense canopy, experienced only 8 ± 9 cm yr−1of thaw, on average. Hollows, topographic low points with low canopy cover, and transition locations, which had canopy cover and elevation between hummocks and hollows, thawed 44 ± 6 cm yr−1and 39 ± 13 cm yr−1, respectively. Mechanisms of thaw differed between these locations. Hollows had high warm-season soil moisture, which increased thermal conductivity, and deep cold-season snow coverage, which insulated soil. Transition locations thawed primarily due to thermal energy transported through subsurface taliks during individual rain events. Most increases in depth to permafrost occurred below the ∼45 cm thickness seasonally frozen layer, and therefore, expanded existing site taliks. Results highlight the importance of canopy cover and microtopography in controlling soil thermal inputs, the ability of subsurface runoff from individual rain events to trigger warming and thaw, and the acceleration of thaw caused by consecutive wet and snowy years. As northern high-latitudes become warmer and wetter, and weather events become more extreme, the importance of these controls on soil warming and thaw is likely to increase.

    more » « less
  4. Abstract

    Wetlands in Arctic drained lake basins (DLBs) have a high potential for carbon storage in vegetation and peat as well as for elevated greenhouse gas emissions. However, the evolution of vegetation and organic matter is rarely studied in DLBs, making these abundant wetlands especially uncertain elements of the permafrost carbon budget. We surveyed multiple DLB generations in northern Alaska with the goal to assess vegetation, microtopography, and organic matter in surface sediment and pond water in DLBs and to provide the first high-resolution land cover classification for a DLB system focussing on moisture-related vegetation classes for the Teshekpuk Lake region. We associated sediment properties and methane concentrations along a post-drainage succession gradient with remote sensing-derived land cover classes. Our study distinguished five eco-hydrological classes using statistical clustering of vegetation data, which corresponded to the land cover classes. We identified surface wetness and time since drainage as predictors of vegetation composition. Microtopographic complexity increased after drainage. Organic carbon and nitrogen contents in sediment, and dissolved organic carbon (DOC) and dissolved nitrogen (DN) in ponds were high throughout, indicating high organic matter availability and decomposition. We confirmed wetness as a predictor of sediment methane concentrations. Our findings suggest moderate to high methane concentrations independent of drainage age, with particularly high concentrations beneath submerged patches (up to 200μmol l−1) and in pond water (up to 22μmol l−1). In our DLB system, wet and shallow submerged patches with high methane concentrations occupied 54% of the area, and ponds with high DOC, DN and methane occupied another 11%. In conclusion, we demonstrate that DLB wetlands are highly productive regarding organic matter decomposition and methane production. Machine learning-aided land cover classification using high-resolution multispectral satellite imagery provides a useful tool for future upscaling of sediment properties and methane emission potentials from Arctic DLBs.

    more » « less
  5. Abstract

    Arctic coastal environments are eroding and rapidly changing. A lack of pan-Arctic observations limits our ability to understand controls on coastal erosion rates across the entire Arctic region. Here, we capitalize on an abundance of geospatial and remotely sensed data, in addition to model output, from the North Slope of Alaska to identify relationships between historical erosion rates and landscape characteristics to guide future modeling and observational efforts across the Arctic. Using existing datasets from the Alaska Beaufort Sea coast and a hierarchical clustering algorithm, we developed a set of 16 coastal typologies that captures the defining characteristics of environments susceptible to coastal erosion. Relationships between landscape characteristics and historical erosion rates show that no single variable alone is a good predictor of erosion rates. Variability in erosion rate decreases with increasing coastal elevation, but erosion rate magnitudes are highest for intermediate elevations. Areas along the Alaskan Beaufort Sea coast (ABSC) protected by barrier islands showed a three times lower erosion rate on average, suggesting that barrier islands are critical to maintaining mainland shore position. Finally, typologies with the highest erosion rates are not broadly representative of the ABSC and are generally associated with low elevation, north- to northeast-facing shorelines, a peaty pebbly silty lithology, and glaciomarine deposits with high ice content. All else being equal, warmer permafrost is also associated with higher erosion rates, suggesting that warming permafrost temperatures may contribute to higher future erosion rates on permafrost coasts. The suite of typologies can be used to guide future modeling and observational efforts by quantifying the distribution of coastlines with specific landscape characteristics and erosion rates.

    more » « less
  6. Free, publicly-accessible full text available October 1, 2024
  7. Free, publicly-accessible full text available October 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024
  9. Few fires are known to have burned the tundra of the Arctic Slope north of the Brooks Range in Alaska, USA. A total of 90 fires between 1969 and 2022 are known. Because fire has been rare, old burns can be detected by the traces of thermokarst and distinct vegetation they leave in otherwise uniform tundra, which are visible in aerial photograph archives. Several prehistoric tundra burns have been found in this way. Detection of tundra fires in this sparsely populated and remote area has been historically inconsistent and opportunistic, relying on reports by aircraft pilots. Fire reports have been logged into an administrative database which, out of necessity, has been used to scientifically evaluate changes in the fire regime. To improve the consistency of the record, we completed a systematic search of Landsat Collection 2 for the Brooks Range Foothills ecoregion over the period 1972–2022. We found 57 unrecorded tundra burns, about 41% of the total, which now numbers 138. Only 15% and 33% of all fires appear in MODIS and VIIRS satellite-borne thermal anomaly products, respectively. The fire frequency in the first 37 years of the record is 0.89 y−1 for natural ignitions that spread ≥10 ha. Frequency in the last 13 years is 2.5 y−1, indicating a nearly three-fold increase in fire frequency. 
    more » « less