Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape.more » « less
-
Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future.more » « less
-
null (Ed.)Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of 12 epithets to learn (Objective 1—O1) if epithet topics are consistent across Web of Science categories using latent Dirichlet allocation topic modeling. We also analyzed publication rates and topics over time to (O2) assess changes in epithet use. We compiled literature definitions to (O3) identify how epithets have been delineated and, lastly, suggest universal terms and definitions. We found a lack of consensus in epithet use between and among various fields. We also found that epithet usage has changed over time, as research focus has shifted from description to modeling. We conclude that multiple epithets are redundant. We offer specific definitions for three epithets (non-perennial, intermittent, and ephemeral) to guide consensus on epithet use. Limiting the number of epithets used in non-perennial river research can facilitate more effective communication among research fields and provide clear guidelines for writing regulatory documents.more » « less