skip to main content


Search for: All records

Creators/Authors contains: "Jones, C Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Private wells often lack centralized oversight, drinking water quality standards, and consistent testing methodologies. For lead in well water, the lack of standardized data collection methods can impact reported measurements, which can misinform health risks. Here, we conducted a targeted community science testing of 1,143 wells across 17 counties in North Carolina (USA) and compared results to state testing data primarily associated with new well construction compiled in the NCWELL database. The goal of our study was to explore the impacts of sampling methodology and household representation on estimated lead exposures and subsequent health risks. At the household scale, we illustrated how sampling and analytical techniques impact lead measurements. The community science testing first draw samples (characterizing drinking water) had a 90th percentile lead value of 12.8 µg/L while the NCWELL database flushed samples (characterizing groundwater) had a value below the reporting level of 5 µg/L. As lead was associated with the corrosion of premise plumbing, flushing prior to collection substantially reduced lead concentrations. At the community scale, we examined how the lack of representation based on household demographics and well construction characteristics impacted the knowledge of lead and blood lead level (BLL) occurrence. When simulating representative demographics of the well populations, we observed that the 90th percentile lead level could differ by up to 6 µg/L, resulting in communities being above the USEPA action level. This translated to a 1.0-1.3 µg/dL difference in predicted geometric mean BLL among infants consuming reconstituted formula. Further, inclusion of less common well construction types also increased lead in water occurrence. Overall, under- and overestimations of lead concentrations associated with differences in sampling techniques and sample representation can misinform conclusions about risks of elevated BLLs associated with drinking water from private wells which may hinder investigations of waterborne lead exposure.

     
    more » « less
  2. Abstract

    Across watershed science, two key variables emerge–streamflow and solute concentration–which serve as the basis for efforts ranging from basic watershed biogeochemistry research to policy decisions surrounding watershed management. However, we rarely account for how error in discharge (Q) impacts estimates of downstream nutrient loading. Here, we examined the impact of uncertainty in streamflow measurements on estimates of downstream nitrate export using publicly available data from the U.S. Geological Survey (USGS). We characterized how uncertainty in stage-discharge relationships impacts annual flux estimates across 70 USGS gages. Our results indicate the interquartile range of relative error in Q was 33% across these USGS sites. We documented a wide range in mean error in annual nitrate loads; some sites were underestimated (−105%), while predicted loads at other sites vastly overestimated (500%). Overall, any error in estimating Q leads to significant unpredictability of annual nutrient loads, which are often used as critical success benchmarks for governmental nutrient reduction strategies. Moreover, error in annual nitrate loads (as mass, kg) increases with mean Q; thus, as high flows become more unpredictable and intense under future climate change, error in estimates of downstream nutrient loading may also increase. Together, this indicates that error in Q may drastically influence our measures of water quality success and decrease our ability to accurately quantify progress towards algal bloom and ‘dead zone’ reduction.

     
    more » « less
  3. Abstract

    Non‐perennial streams, which lack year‐round flow, are widespread globally. Identifying the sources of water that sustain flow in non‐perennial streams is necessary to understand their potential impacts on downstream water resources, and guide water policy and management. Here, we used water isotopes (δ18O and δ2H) and two different modeling approaches to investigate the spatiotemporal dynamics of young water fractions (Fyw) in a non‐perennial stream network at Konza Prairie (KS, USA) during the 2021 summer dry‐down season, as well as over several years with varying hydrometeorological conditions. Using a Bayesian model, we found a substantial amount of young water (Fyw: 39.1–62.6%) sustained flows in the headwaters and at the catchment outlet during the 2021 water year, while 2015–2022 young water contributions estimated using sinusoidal models indicated smallerFywamounts (15.3% ± 5.7). Both modeling approaches indicate young water releases are highly sensitive to hydrological conditions, with stream water shifting to older sources as the network dries. The shift in water age suggests a shift away from rapid fracture flow toward slower matrix flow that creates a sustained but localized surface water presence during late summer and is reflected in the annual dynamics of water age at the catchment outlet. The substantial proportion of young water highlights the vulnerability of non‐perennial streams to short‐term hydroclimatic change, while the late summer shift to older water reveals a sensitivity to longer‐term changes in groundwater dynamics. Combined, this suggests that local changes may propagate through non‐perennial stream networks to influence downstream water availability and quality.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape.

     
    more » « less
  6. Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future. 
    more » « less
  7. Abstract

    A major source of uncertainty in the global methane budget arises from quantifying the area of wetlands and other inland waters. This study addresses how the dynamics of surface water extent in forested wetlands affect the calculation of methane emissions. We used fine resolution satellite imagery acquired at sub‐weekly intervals together with a semiempirical methane emissions model to estimate daily surface water extent and diffusive methane fluxes for a low‐relief wetland‐rich watershed. Comparisons of surface water model predictions to field measurements showed agreement with the magnitude of changes in water extent, including for wetlands with surface area less than 1,000 m2. Results of methane emission models showed that wetlands smaller than 1 hectare (10,000 m2) were responsible for a majority of emissions, and that considering dynamic inundation of forested wetlands resulted in 49%–62% lower emission totals compared to models using a single estimate for each wetland’s size.

     
    more » « less