skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jordan, Thomas M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dielectric anisotropy in ice alters the propagation of polarized radio waves, so polarimetric radar sounding can be used to survey anisotropic properties of ice masses. Ice anisotropy is either intrinsic, associated with ice‐crystal orientation fabric (COF), or extrinsic, associated with material heterogeneity, such as bubbles, fractures, and directional roughness at the glacier bed. Anisotropy develops through a history of snow deposition and ice flow, and the consequent mechanical properties of anisotropy then feed back to influence ice flow. Constraints on anisotropy are therefore important for understanding ice dynamics, ice‐sheet history, and future projections of ice flow and associated sea‐level change. Radar techniques, applied using ground‐based, airborne, or spaceborne instruments, can be deployed more quickly and over a larger area than either direct sampling, via ice‐core drilling, or analogous seismic techniques. Here, we review the physical nature of dielectric anisotropy in glacier ice, the general theory for radio‐wave propagation through anisotropic media, polarimetric radar instruments and survey strategies, and the extent of applications in glacier settings. We close by discussing future directions, such as polarimetric interpretations outside COF, planetary and astrophysical applications, innovative survey geometries, and polarimetric profiling. We argue that the recent proliferation in polarimetric subsurface sounding radar marks a critical inflection, since there are now several approaches for data collection and processing. This review aims to guide the expanding polarimetric user base to appropriate techniques so they can address new and existing challenges in glaciology, such as constraining ice viscosity, a critical control on ice flow and future sea‐level change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. null (Ed.)
  3. Abstract Here we use polarimetric measurements from an Autonomous phase-sensitive Radio-Echo Sounder (ApRES) to investigate ice fabric within Whillans Ice Stream, West Antarctica. The survey traverse is bounded at one end by the suture zone with the Mercer Ice Stream and at the other end by a basal ‘sticky spot’. Our data analysis employs a phase-based polarimetric coherence method to estimate horizontal ice fabric properties: the fabric orientation and the magnitude of the horizontal fabric asymmetry. We infer an azimuthal rotation in the prevailing horizontal c -axis between the near-surface ( z ≈ 10–50 m) and deeper ice ( z ≈ 170–360 m), with the near-surface orientated closer to perpendicular to flow and deeper ice closer to parallel. In the near-surface, the fabric asymmetry increases toward the center of Whillans Ice Stream which is consistent with the surface compression direction. By contrast, the fabric orientation in deeper ice is not aligned with the surface compression direction but is consistent with englacial ice reacting to longitudinal compression associated with basal resistance from the nearby sticky spot. 
    more » « less
  4. Abstract The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross‐basin analysis that investigates the basal conditions across the Pine Island‐Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from −24.8 to +37.4 dB with the highest values beneath fast‐flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along‐flow. Together, these findings highlight the potential for joint airborne radar analysis with ground‐based seismic and geomorphological observations to understand variations in the bed properties and cross‐catchment interactions of ice streams and outlet glaciers. 
    more » « less