skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Julian, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural networks can learn complex, non-convex functions, and it is challenging to guarantee their correct behavior in safety-critical contexts. Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures. Verification algorithms address this need and provide formal guarantees about a neural network by answering "yes or no" questions. For example, they can answer whether a violation exists within certain bounds. However, individual "yes or no" questions cannot answer qualitative questions such as “what is the largest error within these bounds”; the answers to these lie in the domain of optimization. Therefore, we propose strategies to extend existing verifiers to perform optimization and find: (i) the most extreme failure in a given input region and (ii) the minimum input perturbation required to cause a failure. A naive approach using a bisection search with an off-the-shelf verifier results in many expensive and overlapping calls to the verifier. Instead, we propose an approach that tightly integrates the optimization process into the verification procedure, achieving better runtime performance than the naive approach. We evaluate our approach implemented as an extension of Marabou, a state-of-the-art neural network verifier, and compare its performance with the bisection approach and MIPVerify, an optimization-based verifier. We observe complementary performance between our extension of Marabou and MIPVerify 
    more » « less
  2. The ACAS X family of aircraft collision avoidance systems uses large numeric lookup tables to make decisions. Recent work used a deep neural network to approximate and compress a collision avoidance table, and simulations showed that the neural network performance was comparable to the original table. Consequently, neural network representations are being explored for use on small aircraft with limited storage capacity. However, the black-box nature of deep neural networks raises safety concerns because simulation results are not exhaustive. This work takes steps towards addressing these concerns by applying formal methods to analyze the behavior of collision avoidance neural networks both in isolation and in a closed-loop system. We evaluate our approach on a specific set of collision avoidance networks and show that even though the networks are not always locally robust, their closed-loop behavior ensures that they will not reach an unsafe (collision) state. 
    more » « less
  3. Ivrii, Alexander ; Strichman, Ofer (Ed.)
    Inspired by recent successes of parallel techniques for solving Boolean satisfiability, we investigate a set of strategies and heuristics to leverage parallelism and improve the scalability of neural network verification. We present a general description of the Split-and-Conquer partitioning algorithm, implemented within the Marabou framework, and discuss its parameters and heuristic choices. In particular, we explore two novel partitioning strategies, that partition the input space or the phases of the neuron activations, respectively. We introduce a branching heuristic and a direction heuristic that are based on the notion of polarity. We also introduce a highly parallelizable pre-processing algorithm for simplifying neural network verification problems. An extensive experimental evaluation shows the benefit of these techniques on both existing and new benchmarks. A preliminary experiment ultra-scaling our algorithm using a large distributed cloud-based platform also shows promising results. 
    more » « less
  4. Deep neural networks are revolutionizing the way complex systems are designed. Consequently, there is a pressing need for tools and techniques for network analysis and certification. To help in addressing that need, we present Marabou, a framework for verifying deep neural networks. Marabou is an SMT-based tool that can answer queries about a network’s properties by transforming these queries into constraint satisfaction problems. It can accommodate networks with different activation functions and topologies, and it performs high-level reasoning on the network that can curtail the search space and improve performance. It also supports parallel execution to further enhance scalability. Marabou accepts multiple input formats, including protocol buffer files generated by the popular TensorFlow framework for neural networks. We describe the system architecture and main components, evaluate the technique and discuss ongoing work. 
    more » « less