skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jung, SeHee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents a mobile app that facilitates undergraduate students to learn data science through their own full body motions. Leveraging the built-in camera of a mobile device, the proposed app captures the user and feeds their images into an open-source computer-vision algorithm that localizes the key joint points of human body. As students can participate in the entire data collection process, the obtained motion data is context-rich and personally relevant to them. The app utilizes the collected motion data to explain various concepts and methods in data science under the context of human movements. The app also visualizes the geometric interpretation of data through various visual aids, such as interactive graphs and figures. In this study, we use principal component analysis, a commonly used dimensionality reduction method, as an example to demonstrate the proposed learning framework. Strategies to encompass other learning modules are also discussed for further improvement. 
    more » « less
  2. In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies, computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder (cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks associated with the generated postures with a variety of positions of point of operation. The position of point of operation that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm. 
    more » « less
  3. Advances in robotics have contributed to the prevalence of human-robot collaboration (HRC). Working and interacting with collaborative robots in close proximity can be psychologically stressful. Therefore, it is important to understand the impacts of human-robot interaction (HRI) on mental stress to promote psychological well-being at the workplace. To this end, this study investigated how the HRI presence, complexity, and modality affect psychological stress in humans and discussed possible HRI design criteria during HRC. An experimental setup was implemented in which human operators worked with a collaborative robot on a Lego assembly task, using different interaction paradigms involving pressing buttons, showing hand gestures, and giving verbal commands. The NASA-Task Load Index, as a subjective measure, and the physiological galvanic skin conductance response, as an objective measure, were used to assess the levels of mental stress. The results revealed that the introduction of interactions during HRC helped reduce mental stress and that complex interactions resulted in higher mental stress than simple interactions. Meanwhile, the use of certain interaction modalities, such as verbal commands or hand gestures, led to significantly higher mental stress than pressing buttons, while no significant difference on mental stress was found between showing hand gestures and giving verbal commands. 
    more » « less