Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In coalescing ballistic annihilation, infinitely many particlesmove with fixed velocities across the real line and, upon colliding, either mutually annihilate or generate a new particle. We compute the critical density in symmetric three-velocity systems with four-parameter reaction equations.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available November 1, 2024
-
Three-velocity ballistic annihilation is an interacting system in which stationary, left-, and right-moving particles are placed at random throughout the real line and mutually annihilate upon colliding. We introduce a coalescing variant in which collisions may generate new particles. For a symmetric three-parameter family of such systems, we compute the survival probability of stationary particles at a given initial density. This allows us to describe a phase-transition for stationary particle survival.more » « less
-
Khudyakov, Yury E (Ed.)We construct an agent-based SEIR model to simulate COVID-19 spread at a 16000-student mostly non-residential urban university during the Fall 2021 Semester. We find that mRNA vaccine coverage at 100% combined with weekly screening testing of 25% of the campus population make it possible to safely reopen to in-person instruction. Our simulations exhibit a right-skew for total infections over the semester that becomes more pronounced with less vaccine coverage, less vaccine effectiveness and no additional preventative measures. This suggests that high levels of infection are not exceedingly rare with campus social connections the main transmission route. Finally, we find that if vaccine coverage is 100% and vaccine effectiveness is above 80%, then a safe reopening is possible even without facemask use. This models possible future scenarios with high coverage of additional “booster” doses of COVID-19 vaccines.more » « less
-
Gallos, Lazaros K. (Ed.)We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from students. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections.more » « less
-
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $\unicode[STIX]{x1D707}$ on the full $d$ -ary tree of height $n$ . If $\unicode[STIX]{x1D707}=\unicode[STIX]{x1D6FA}(d^{2})$ , all of the vertices are visited in time $\unicode[STIX]{x1D6E9}(n\log n)$ with high probability. Conversely, if $\unicode[STIX]{x1D707}=O(d)$ the cover time is $\exp (\unicode[STIX]{x1D6E9}(\sqrt{n}))$ with high probability.more » « less