skip to main content


Search for: All records

Creators/Authors contains: "Jungfleisch, M. Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Terahertz technology has the potential to have a large impact in myriad fields, such as biomedical science, spectroscopy, and communications. Making these applications practical requires efficient, reliable, and low‐cost devices. Photoconductive switches (PCS), devices capable of emitting and detecting terahertz pulses, are a technology that needs more efficiency when working at telecom wavelength excitation (1550 nm) to exploit the advantages this wavelength offers. ErAs:InGaAs is a semiconductor nanocomposite working at this energy; however, high dark resistivity is challenging due to a high electron concentration as the Fermi level lies in the conduction band. To increase dark resistivity, ErAs:InGaAlBiAs material is used as the active material in a PCS detecting Terahertz pulses. ErAs nanoparticles reduce the carrier lifetime to subpicosecond values required for short temporal resolution, while ErAs pins the effective Fermi level in the host material bandgap. Unlike InGaAs, InGaAlBiAs offers enough freedom for band engineering to have a material compatible with a 1550 nm pump and a Fermi level deep in the bandgap, meaning low carrier concentration and high dark resistivity. Band engineering is possible by incorporating aluminum to lift the conduction band edge to the Fermi level and bismuth to keep a bandgap compatible with 1550 nm excitation. 
    more » « less
    Free, publicly-accessible full text available April 18, 2025
  2. Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities. Increasingly, nanomagnetic systems are expanding into three-dimensional architectures. This has enhanced the range of available magnetic microstates and functional behaviours, but engineering control over 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial composed from multilayered artificial spin ice nanoarrays. Comprising two magnetic layers separated by a non-magnetic spacer, each nanoisland may assume four macrospin or vortex states per magnetic layer. This creates a system with a rich 16Nmicrostate space and intense static and dynamic dipolar magnetic coupling. The system exhibits a broad range of emergent phenomena driven by the strong inter-layer dipolar interaction, including ultrastrong magnon-magnon coupling with normalised coupling rates of$$\frac{\Delta f}{\nu }=0.57$$Δfν=0.57, GHz mode shifts in zero applied field and chirality-control of magnetic vortex microstates with corresponding magnonic spectra. 
    more » « less
    Free, publicly-accessible full text available May 14, 2025
  3. Abstract

    Magnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice. We find that these systems exhibit effective scattering processes akin to those observed in continuous magnetic thin films. We utilize a combined microwave and microfocused Brillouin light scattering measurement approach to investigate the evolution of their modes. Scattering events occur between resonance frequencies that are determined by each nanomagnet’s mode volume and profile. Comparison with numerical simulations reveals that frequency doubling is enabled by exciting a subset of nanomagnets that, in turn, act as nanosized antennas, an effect that is akin to scattering in continuous films. Moreover, our results suggest that tunable directional scattering is possible in these structures.

     
    more » « less
  4. Abstract We demonstrate direct probing of strong magnon–photon coupling using Brillouin light scattering (BLS) spectroscopy in a planar geometry. The magnonic hybrid system comprises a split-ring resonator loaded with epitaxial yttrium iron garnet thin films of 200 nm and 2.46  μ m thickness. The BLS measurements are combined with microwave spectroscopy measurements where both biasing magnetic field and microwave excitation frequency are varied. The cooperativity for the 200 nm-thick YIG films is 1.1, and larger cooperativity of 29.1 is found for the 2.46 μ m-thick YIG film. We show that BLS is advantageous for probing the magnonic character of magnon–photon polaritons, while microwave absorption is more sensitive to the photonic character of the hybrid excitation. A miniaturized, planar device design is imperative for the potential integration of magnonic hybrid systems in future coherent information technologies, and our results are a first stepping stone in this regard. Furthermore, successfully detecting the magnonic hybrid excitation by BLS is an essential step for the up-conversion of quantum signals from the microwave to the optical regime in hybrid quantum systems. 
    more » « less
  5. Terahertz (THz) sciences and technologies have contributed to a rapid development of a wide range of applications and expanded the frontiers in fundamental science. Spintronic terahertz emitters offer conceptual advantages since the spin orientation in the magnetic layer can be easily controlled either by the externally applied magnetic field or by the internal magnetic field distribution determined by the specific shape of the magnetic elements. Here, we report a switchable terahertz source based on micropatterned magnetic heterostructures driven by femtosecond laser pulses. We show that the precise tunability of the polarization state is facilitated by the underlying magnetization texture of the magnetic layer that is dictated by the shape of the microstructure. These results also reveal the underlying physical mechanisms of a nonuniform magnetization state on the generation of ultrafast spin currents in the magnetic heterostructures. Our findings indicate that the emission of the linearly polarized THz waves can be switched on and off by saturating the sample using a biasing magnetic field, opening fascinating perspectives for integrated on-chip THz devices with wide-ranging potential applications. 
    more » « less
  6. Spin-to-charge conversion (S2CC) processes in thin-film heterostructures have attracted much attention in recent years. Here, we describe the S2CC in a 3D topological insulator Bi2Te3 interfaced with an epitaxial film of Fe75Co25. The quantification of spin-to-charge conversion is made with two complementary techniques: ferromagnetic resonance based inverse spin Hall effect (ISHE) at GHz frequencies and femtosecond light-pulse induced emission of terahertz (THz) radiation. The role of spin rectification due to extrinsic effects like anisotropic magnetoresistance (AMR) and planar Hall effects (PHE) is pronounced at the GHz timescale, whereas the THz measurements do not show any detectible signal, which could be attributed to AMR or PHE. This result may be due to (i) homodyne rectification at GHz, which is absent in THz measurements and (ii) laser-induced thermal spin current generation and magnetic dipole radiation in THz measurements, which is completely absent in GHz range. The converted charge current has been analyzed using the spin diffusion model for the ISHE. We note that regardless of the differences in timescales, the spin diffusion length in the two cases is comparable. Our results aid in understanding the role of spin pumping timescales in the generation of ISHE signals.

     
    more » « less