skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jurss, Jonah W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Novel imidazole-pyridine photocatalysts favoring selectivity for formic acid production. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  2. Free, publicly-accessible full text available September 23, 2025
  3. null (Ed.)
    Two NNN pincer complexes of Cu( ii ) and Ni( ii ) with BPI Me − [BPI Me − = 1,3-bis((6-methylpyridin-2-yl)imino)isoindolin-2-ide] have been prepared and characterized structurally, spectroscopically, and electrochemically. The single crystal structures of the two complexes confirmed their distorted trigonal bipyramidal geometry attained by three equatorial N-atoms from the ligand and two axially positioned water molecules to give [Cu(BPI Me )(H 2 O) 2 ]ClO 4 and [Ni(BPI Me )(H 2 O) 2 ]ClO 4 . Electrochemical studies of Cu( ii ) and Ni( ii ) complexes have been performed in acetonitrile to identify metal-based and ligand-based redox activity. When subjected to a saturated CO 2 atmosphere, both complexes displayed catalytic activity for the reduction of CO 2 with the Cu( ii ) complex displaying higher activity than the Ni( ii ) analogue. However, both complexes were shown to decompose into catalytically active heterogeneous materials on the electrode surface over extended reductive electrolysis periods. Surface analysis of these materials using energy dispersive spectroscopy as well as their physical appearance suggests the reductive deposition of copper and nickel metal on the electrode surface. Electrocatalysis and decomposition are proposed to be triggered by ligand reduction, where complex stability is believed to be tied to fluxional ligand coordination in the reduced state. 
    more » « less