skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Justice, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Engaging students with well-designed clicker questions is one of the commonly used research-based instructional strategy in physics courses partly because it has a relatively low barrier to implementation. Moreover, validated robust sequences of clicker questions are likely to provide better scaffolding support and guidance to help students build a good knowledge structure of physics than an individual clicker question on a particular topic. Here we discuss the development, validation and in-class implementation of a clicker question sequence (CQS) for helping advanced undergraduate students learn about Larmor precession of spin, which takes advantage of the learning goals and inquiry-based guided learning sequences in a previously validated Quantum Interactive Learning Tutorial (QuILT). The in-class evaluation of the CQS using peer instruction is discussed by comparing upper-level undergraduate students’ performance after traditional lecture-based instruction and after engaging with the CQS. 
    more » « less
  2. Abstract We investigated the difficulties that physics students in upper-level undergraduate quantum mechanics and graduate students after quantum and statistical mechanics core courses have with the Fermi energy, the Fermi–Dirac distribution and total electronic energy of a free electron gas after they had learned relevant concepts in their respective courses. These difficulties were probed by administering written conceptual and quantitative questions to undergraduate students and asking some undergraduate and graduate students to answer those questions while thinking aloud in one-on-one individual interviews. We find that advanced students had many common difficulties with these concepts after traditional lecture-based instruction. Engaging with a sequence of clicker questions improved student performance, but there remains room for improvement in their understanding of these challenging concepts. 
    more » « less
  3. Abstract Engaging students with well-designed multiple-choice questions during class and asking them to discuss their answers with their peers after each student has contemplated the response individually can be an effective evidence-based active-engagement pedagogy in physics courses. Moreover, validated sequences of multiple-choice questions are more likely to help students build a good knowledge structure of physics than individual multiple-choice questions on various topics. Here we discuss a framework to develop robust sequences of multiple-choice questions and then use the framework for the development, validation and implementation of a sequence of multiple-choice questions focusing on helping students learn quantum mechanics via the Stern–Gerlach experiment (SGE) that takes advantage of the guided inquiry-based learning sequences in an interactive tutorial on the same topic. The extensive research in developing and validating the multiple-choice question sequence (MQS) strives to make it effective for students with diverse prior preparation in upper-level undergraduate quantum physics courses. We discuss student performance on assessment task focusing on the SGE after traditional lecture-based instruction versus after engaging with the research-validated MQS administered as clicker questions in which students had the opportunity to discuss their responses with their peers. 
    more » « less