Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract FrontFinder artificial intelligence (AI) is a novel machine learning algorithm trained to detect cold, warm, stationary, and occluded fronts and drylines. Fronts are associated with many high-impact weather events around the globe. Frontal analysis is still primarily done by human forecasters, often implementing their own rules and criteria for determining front positions. Such techniques result in multiple solutions by different forecasters when given identical sets of data. Numerous studies have attempted to automate frontal analysis through numerical frontal analysis. In recent years, machine learning algorithms have gained more popularity in meteorology due to their ability to learn complex relationships. Our algorithm was able to reproduce three-quarters of forecaster-drawn fronts over CONUS and NOAA’s unified surface analysis domain on independent testing datasets. We applied permutation studies, an explainable artificial intelligence method, to identify the importance of each variable for each front type. The permutation studies showed that the most “important” variables for detecting fronts are consistent with observed processes in the evolution of frontal boundaries. We applied the model to an extratropical cyclone over the central United States to see how the model handles the occlusion process, with results showing that the model can resolve the early stages of occluded fronts wrapping around cyclone centers. While our algorithm is not intended to replace human forecasters, the model can streamline operational workflows by providing efficient frontal boundary identification guidance. FrontFinder has been deployed operationally at NOAA’s Weather Prediction Center. Significance StatementFrontal boundaries drive many high-impact weather events worldwide. Identification and classification of frontal boundaries is necessary to anticipate changing weather conditions; however, frontal analysis is still mainly performed by human forecasters, leaving room for subjective interpretations during the frontal analysis process. We have introduced a novel machine learning method that identifies cold, warm, stationary, and occluded fronts and drylines without the need for high-end computational resources. This algorithm can be used as a tool to expedite the frontal analysis process by ingesting real-time data in operational environments.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract We present and evaluate a deep learning first-guess front-identification system that identifies cold, warm, stationary, and occluded fronts. Frontal boundaries play a key role in the daily weather around the world. Human-drawn fronts provided by the National Weather Service’s Weather Prediction Center, Ocean Prediction Center, Tropical Analysis and Forecast Branch, and Honolulu Forecast Office are treated as ground-truth labels for training the deep learning models. The models are trained using ERA5 data with variables known to be important for distinguishing frontal boundaries, including temperature, equivalent potential temperature, and wind velocity and direction at multiple heights. Using a 250-km neighborhood over the contiguous U.S. domain, our best models achieve critical success index scores of 0.60 for cold fronts, 0.43 for warm fronts, 0.48 for stationary fronts, 0.45 for occluded fronts, and 0.71 using a binary classification system (front/no front), whereas scores over the full unified surface analysis domain were lower. For cold and warm fronts and binary classification, these scores significantly outperform prior baseline methods that utilize 250-km neighborhoods. These first-guess deep learning algorithms can be used by forecasters to locate frontal boundaries more effectively and expedite the frontal analysis process. Significance StatementFronts are boundaries that affect the weather that people experience daily. Currently, forecasters must identify these boundaries through manual analysis. We have developed an automated machine learning method for detecting cold, warm, stationary, and occluded fronts. Our automated method provides forecasters with an additional tool to expedite the frontal analysis process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
